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Summary

Photoacoustic imaging is a relatively new imaging technology, in which an object is
illuminated with optical energy and where in return measurements are taken in the
acoustical domain. Due to a physical phenomenon, called the photoacoustic effect,
the absorption of light leads to the generation of pressure waves. By measuring these
generated pressure waves outside of the object it is possible to reconstruct an image
of the optical absorption distribution of the imaged object. Several photoacoustic
imaging approaches exist, which differ in how to deliver the optical energy to the
object, how to measure the generated pressure waves, and how the imaging setup is
geometrically laid out. In this thesis we focus on an implementation that is being
developed by the Biomedical Photonic Imaging (BMPI) group of the University of
Twente. This implementation is coined the Passive Element enRiched PhotoAcous-
tic Tomography (PER-PAT) imaging setup. It allows not only to image the optical
absorption distribution, but also the speed of sound distribution and acoustic atten-
uation distribution at the same time, by adding carefully positioned passive elements
into the setup. These passive elements act as ultrasound point sources when being
illuminated with pulsed optical energy. The work that is presented in this thesis deals
with the signal processing that is necessary to transform the measured pressure sig-
nals with a PER-PAT imaging setup into reconstructions of these three distributions.
This work is divided into four parts.

The first part is about the calibration of the imaging setup. Calibration of the
setup is necessary because, in order to do a good reconstruction, the exact geomet-
rical parameters of the setup need to be known. To make this possible, two kind of
measurements, a calibration and a reference measurement, should be performed on
the imaging setup. We presented an analysis on the properties of these two mea-
surements and finally proposed a robust algorithm that automatically determines the
geometrical parameters from the two input measurements. Because of the noise and
sometimes low amplitude measurements this is a difficult task, which is handled very
well by our algorithm on all our performed measurements so far.

The second part is about the pre-processing step which is necessary for the re-
construction of the speed of sound and acoustic attenuation distributions. In this
pre-processing step, we extract the time delay and attenuation factors that are en-
countered by acoustic signals traveling from these passive elements to our ultrasound
detector elements. Therefore we investigated the estimation of these two propagation
parameters from the raw pressure signals. Two existing approaches were compared
to several new approaches, which were all based on performing a maximum likelihood
estimate. We found that these new estimators have a wider application area and some
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ii CHAPTER 0. SUMMARY

of them perform better by making use of more of the information that is available in
the measured raw pressure signals.

In the third part we discuss the reconstruction of actual speed of sound and acous-
tic attenuation distributions from the, in the previous part, extracted time delay and
attenuation factors. We propose an algorithm that can be used to reconstruct these
distributions from a PER-PAT setup containing one or more passive elements. Exper-
imental validation showed that it is very well possible to use the PER-PAT setup to
reconstruct the speed of sound and acoustic attenuation distributions. Furthermore
it is shown that when more passive elements are used, less projection are required
to maintain the same image quality, resulting in a decrease of the time needed to
perform a measurement.

The last part contains our approach and findings on reconstructing the optical
absorption distribution. We start with a general investigation of the reconstruction
problem and the possible approaches, either direct or iteratively, to perform the re-
construction. The direct approach is a very fast, but approximate, solution to the
reconstruction problem. The iterative approach can result in much more accurate
solutions, but can be orders of magnitude more demanding in terms of computational
complexity. We propose a way to accelerate the convergence speed of the iterative
methods by using a pre-conditioner based on 2-d FFT transforms. Furthermore, we
looked into the reconstruction of optical absorption in the presence of speed of sound
inhomogeneities in the object. Speed of sound inhomogeneities in the object can
result in blurred optical absorption reconstructions, when these inhomogeneities are
ignored in the reconstruction. We proposed an algorithm to correct for these inhomo-
geneities and have successfully showed the improvement from the new algorithm using
experimental results. In the end of the last part, we look into a motion correction
algorithm, that allows for the correction of motion artifacts of a photoacoustic mea-
surement using landmarks attached to the imaged object. Unwanted motion during
measurements was a problem that occurred in the first generation PER-PAT imaging,
for which we could successfully compensate by using this motion correction algorithm.

The thesis thus describes the complete division of the signal processing into prob-
lems and solutions that are necessary for image reconstruction in the PER-PAT imag-
ing setup. Based on the described findings we conclude that we have developed
successful algorithms and methods for the image reconstruction problem with the
PER-PAT imaging setup.



Samenvatting

Fotoacoustische beeldvorming is een relatief nieuwe beeldvormingstechniek, waarbij
een object belicht wordt met optische energie en waarop metingen worden uitgevoerd
in het acoustische domein. Door een fysisch verschijnsel, het fotoacoustische effect
genaamd, leidt de absorptie van licht tot het ontstaan van drukgolven. Door het
meten van deze ontstane drukgolven aan de buitenkant van het object is het mo-
gelijk om een beeld te reconstrueren van de optische absorptiedistributie van het
gemeten object. Er bestaan verschillende fotoacoustische beeldvormingstechnieken,
welke verschillen in de manier waarop de optische energie naar het object overge-
bracht wordt, de manier waarop de drukgolven gemeten worden en de manier waarop
de beeldvormingsopstelling geometrisch in elkaar zit. In dit proefschrift leggen we
de nadruk op een implementatie die ontworpen wordt bij de Biomedical Photonic
Imaging (BMPI) groep van de Universiteit Twente. Deze implementatie draagt de
naam Passive Element enRiched PhotoAcoustic Tomography (PER-PAT) beeldvorm-
ingsopstelling. Met deze opstelling is het niet alleen mogelijk om de optische absorp-
tiedistributie te meten, maar ook tegelijkertijd de geluidssnelheidsdistributie en de
acoustische verzwakkingsdistributie door het zorgvuldig plaatsen van een passief el-
ement in de opstelling. Deze passieve elementen gedragen zich als ultrageluid punt
bronnen wanneer ze belicht worden door gepulseerde optische energie. Het werk dat
in dit proefschrift gepresenteerd is houdt zich bezig met de signaalbewerking die nodig
is om de gemeten drukgolven met de PER-PAT opstelling om te zetten in beelden
van deze drie distributies. Dit werk is opgesplitst in vier delen.

Het eerste deel gaat over de calibratie van de beeldvormingsopstelling. Calibratie
van de opstelling is noodzakelijk omdat, om een goede reconstructie te doen, de ex-
acte geometrische parameters van de opstelling bekend moeten zijn. Om dit mogelijk
te maken moeten twee soorten metingen, een calibratie- en een referentiemeting, uit-
gevoerd worden. Wij presenteren een analyse van de eigenschappen van deze twee
metingen en komen uiteindelijk met een robuust algorithme dat automatisch deze
geometrische parameters bepaalt uit de twee metingen. Door ruis en soms lage sig-
naalintensiteiten was dit een uitdagende taak, die door ons algorithme goed is getest
op alle metingen die tot zover gedaan zijn.

Het tweede deel gaat over de voorbewerkingsstap die noodzakelijk is voor de re-
constructie van de geluidssnelheids- en acoustische verzwakkingsdistributies. In deze
voorbewerkingsstap bepalen we vertragings- en verzwakkingsfactoren die ondergaan
worden door acoustische signalen die van de passieve elementen naar de ultrageluids-
detectorelementen reizen. Om dit te kunnen uitvoeren hebben we de schatting van
deze twee propagatieparameters van de ruwe signalen onderzocht. Twee bestaande
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iv CHAPTER 0. SAMENVATTING

methoden hebben we vergeleken met een aantal nieuwe methoden, welke allemaal
gebaseerd zijn op het doen van een maximale waarschijnlijkheidsschatting. Hier
hebben we uit geleerd dat deze nieuwe methoden een breder applicatiegebied hebben
en dat sommige van de nieuwe methoden beter konden presteren door gebruik te
maken van extra informatie die ook beschikbaar is in de ruwe ultrageluidssignalen.

In het derde deel onderzoeken we uiteindelijk de reconstructie van de
geluidssnelheids- en de acoustische verzwakkingsdistributies uit de, in het vorige deel,
bepaalde vertragings- en verzwakkingsfactoren. We presenteren een algorithme dat
gebruikt kan worden in de reconstructie van deze distributies met de PER-PAT op-
stelling, die een of meerdere passieve elementen bevat. Door het doen van exper-
imenten hebben we aangetoond dat het zeer goed mogelijk is om de PER-PAT op-
stelling te gebruiken om de geluidssnelheids- en acoustische verzwakkingsdistributie te
reconstrueren. Daarnaast hebben we aangetoond dat, wanneer er meerdere passieve
elementen gebruikt worden, er minder projecties nodig zijn om dezelfde beeldkwaliteit
te kunnen blijven behouden, wat resulteert in een afname van de tijd die nodig is om
een meting uit te voeren.

Het laatste deel bevat onze aanpak en bevindingen over de reconstructie van
de optische absorptiedistributie. We beginnen met een algemeen onderzoek naar
het reconstructieprobleem en de mogelijke oplossingen, hetzij direct hetzij iteratief,
om de reconstructie uit te voeren. De directe aanpak is een erg snelle, maar niet
noodzakelijkerwijs nauwkeurige, oplossing. De iteratieve aanpak kan resulteren in
veel nauwkeurigere oplossingen, maar kan ordes van grootte langer duren om uit te
rekenen. Wij presenteren een manier om de convergentietijd van de iteratieve meth-
oden te versnellen door gebruik te maken van een voorconditionering, gebaseerd op
2-d FFT transformaties. Daarnaast hebben we gekeken naar de reconstructie van op-
tische absorptie onder de aanwezigheid van geluidssnelheidsinhomogeniteiten in het
object. Geluidssnelheidsverschillen in het object kunnen leiden tot een vervagende
optische absorptiereconstructie, als de inhomogeniteiten verwaarloosd worden in de
reconstructie. Wij presenteren een algorithm dat corrigeert voor deze inhomogen-
iteiten en laten succesvol de verbetering van het nieuwe algorithme op experimentele
resultaten zien. Aan het einde van dit laatste deel van het proefschrift onderzoeken
we een bewegingscorrectiealgorithme, waarmee bewegingsartifacten in fotoacoustis-
che metingen gecorrigeerd kunnen worden door gebruik te maken van markeringen,
aangebracht op het te meten object. Ongevraagde beweging tijdens metingen was een
probleem dat optrad in de eerste generatie van de PER-PAT opstelling, waarvoor we
succesvol konden compenseren met behulp van dit bewegingscorrectiealgorithme.

Het proefschrift in zijn geheel beschrijft dus de opdeling in problemen en oplossin-
gen van de signaalbewerking die nodig is om beeldreconstructies te kunnen uitvoeren
met de PER-PAT beeldvormingsopstelling. Op grond van de beschreven bevindingen
concluderen we dat we succesvolle algorithmes en methoden hebben ontwikkeld ten
behoeve van beeldreconstructie met de PER-PAT beeldvormingsopstelling.
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1
Introduction

This thesis presents an analysis, description and experimental validation of the signal
processing, i.e., calibration, post-processing, image reconstruction, needed in a Pas-
sive Element enRiched PhotoAcoustic Tomography (PER-PAT) imaging setup. The
thesis consists of four parts, every part in a separate chapter, which are intercon-
nected and will be further introduced after defining the scope and context here in the
introduction. But before we start with that, first a motivation and an introduction
into photoacoustics and its applications will be given.

1.1 Motivation

Photoacoustic imaging is a modality which has the goal to image the optical absorp-
tion distribution inside an object. To reach this goal an object is illuminated with
a light source, which introduces a distribution of absorbed optical energy inside the
object. The absorbed optical energy is transformed into outward traveling pressure
waves (ultrasound waves) via fast heat release and thermal expansion. This transfor-
mation is termed the photoacoustic effect. The frequency of the generated pressure
wave typically depends on the size of structures present in the object, and the time
delay for a generated wave to reach a certain measurement point gives an indication
of the distance to the responsible structure in the object. This knowledge allows
the reconstruction of the optical absorption distribution from measurements of the
photoacoustically generated ultrasound waves.

The combined optical/acoustical properties are the strength of photoacoustic
imaging. The contrast is mainly dictated by the absorption of optical energy, light
having a reasonable penetration depth in soft tissue of 10 - 100 mm [1]. The ab-
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sorption of optical energy offers higher contrast than ultrasound imaging, which only
detects ultrasound properties of the object. The resolution on the other hand is
mainly dictated by the measurement of the generated ultrasound wave and thus de-
pends on the characteristics of the detection system used. Ultrasound propagation
through soft tissue has a much lower scattering than pure optical imaging and thus
allows higher resolution measurements to be taken. An advantage of using optical
energy as input energy, over for example x-ray, is the fact that optical photons pro-
vide nonionizing and safe radiation for medical applications[1]. Thus due to the good
contrast of optical absorption, the non-ionizing character of light, and a scalable reso-
lution, photoacoustic imaging lends itself as a promising medical imaging modality to
image for example cancer. Malignant tumors are characterized by angiogenesis, the
formation of a network of blood vessels, resulting in an increased optical absorption at
the site of the tumor[2]. Furthermore, photoacoustic imaging can be a valuable tool
for other diagnosis based on imaging the (micro-)vascular system, such as monitoring
wound healing and optimizing the treatment of portwine stains[3].

1.2 The photoacoustic effect

The photoacoustic effect can be defined as the conversion of absorbed optical (or elec-
tromagnetic) energy to acoustic energy. There is a wide literature on photoacoustic
signal generation and the physical effects which are responsible for the photoacoustic
effect. The thermoelastic effect seems to be[4, 5], among the various sources by which
acoustic waves can be generated from illumination with optical energy, by far the
most efficient one. The absorption of optical energy leads to heating of the object
and subsequent thermal expansion will generate an initial pressure distribution in-
side the object. This initial pressure distribution finally results in outwards traveling
pressure waves.

For efficient generation of pressure waves, a short pulse of optical energy should
be emitted. How short this pulse should be is governed by the conditions of thermal
confinement and stress confinement[1]. If the condition of thermal confinement is not
met, then the effect of heat diffusion is significant on the time scale of the laser pulse
duration. If the condition of stress confinement is not met, then the effect of pressure
propagation is significant on the time scale of the laser pulse duration. Whether those
effects are significant on the laser pulse duration time scale depends on the size of
absorbers in the object, the smaller the sizes are, the more significant the effect will
be. Having a too long laser pulse duration with respect to these small sizes, results
in a low pass filtering effect on the generated pressure wave and thus results in a
degradation of the resolution of the system.

The heating of the object, due to the absorption of laser light can be represented
in a spatially and time dependent heating function H(r, t). This heating function
represents the amount of absorbed energy per unit volume per unit time. The resulting
temperature rise due to heating can be modeled by the heat conduction equation,
relating the temperature distribution T (r, t) [K] to the heating functionH(r, t) [J/(m3
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s)], according to[6]:

ρCp

∂T (r, t)

∂t
= λ∇2T (r, t) +H(r, t) (1.1)

here ρ [kg/m3] is the density of the material, Cp [J/(K kg)] is the specific heat and λ
[J/(K m s)] is the thermal conductivity. Under the condition of thermal confinement
heat diffusion can be neglected, so that the heat equation reduces to:

ρCp

∂T (r, t)

∂t
≈ H(r, t) (1.2)

The excess temperature distribution is related to the excess acoustic pressure p(r, t)
via the following wave equation:

∇2p(r, t)− 1

c2
∂2

∂t2
p(r, t) = −βρ

∂2

∂t2
T (r, t) (1.3)

where c [m/s] is the speed of sound and β [K−1] is the volume thermal expansion
coefficient. This means that under the condition of thermal confinement, using (1.2),
the generated excess pressure distribution is related to the heating function according
to:

∇2p(r, t)− 1

c2
∂2

∂t2
p(r, t) = − β

Cp

∂

∂t
H(r, t) (1.4)

The heating function can furthermore be seen as the product of a purely spatial
function A(r) representing the spatial distribution of the heat and a purely time
dependent function I(t) representing the time profile of the illuminating laser source,
i.e., H(r, t) = A(r)I(t). Furthermore, under the condition of stress confinement the
laser pulse profile can be considered as a delta function, i.e., I(t) = δ(t). A solution
to the generated excess pressure in terms of the absorption distribution A(r) can now
be found by the use of the Green’s function, see Appendix A, resulting in:

p(r, t) =
β

4πCp

∂

∂t

(

1

t

∫ ∫

‖r′−r‖=ct

A(r′)dr′
)

(1.5)

This means that the generated pressure is related to the time derivative of the inte-
grated absorption distribution over the surface of a sphere, where the radius of the
sphere is proportional to the time that has elapsed since firing the laser source. The
initial pressure at t = 0, p0(r) = p(r, 0) is then simply given by:

p0(r) =
βc2

Cp

A(r) = ΓA(r) (1.6)

where Γ is the (dimensionless) Grueneisen[1] parameter which characterizes the
thermo-acoustic efficiency. The initial pressure distribution is thus directly propor-
tional to the absorption distribution A(r).

This model is a simplification which ignores acoustic attenuation and assumes that
the speed of sound is constant throughout the complete object. Including attenuating



4 CHAPTER 1. INTRODUCTION

effects requires a modified wave equation with a modified Green’s function. The
exact form of the time domain wave equation for acoustic attenuation, with its linear
dependence on frequency as encountered in soft tissue, is still an open issue. The
question is however to what extent ignoring attenuating effects would degrade the
reconstruction. A computer simulation study where homogeneous, soft tissue like,
acoustic attenuation was modeled[7] shows that ignoring this effect has a blurring
effect on the reconstructed images. This is an interesting observation and a logical
direction for future work and especially how to deal with inhomogeneous acoustic
attenuation. The assumption of a homogeneous speed of sound distribution is easily
violated in soft tissue and having an inhomogeneous speed of sound distribution is
one of the topics that will be addressed in this thesis.

1.3 Scope and context

Photoacoustic imaging can be performed in various geometries. A single ultrasound
detector can be scanned across the surface of tissue [8, 9, 10, 11] with image reconstruc-
tions based on synthetic aperture methods [12, 9, 13]. Linear arrays [14, 15, 16, 17]
and 2d planar arrays have been used to achieve largely similar results [18, 19]. In con-
trast to these methods, which may be classified as measurements of single projections
of the subject, acquisition of multiple projections around the tissue in the manner of
computed tomography have gained in popularity. These measurements have been per-
formed using point detectors in circular or hemispherical arrays [20, 21, 22], medium
aspect-ratio detectors in cylindrical arrays [23, 24, 25, 26, 27] and high aspect-ratios
(1-d) [28] and large area 2-d detectors [29, 30].

We have chosen for a setup with a 1-d piezoelectric sensor array for recording
the pressure waves and a laser, using side illumination instead of top illumination, to
deliver the pulses of optical energy. Both the sensor array and the laser are rotating
with respect to the object under investigation and are focused in a 2-d slice through
of the object. This allows for 2-d sliced based imaging of the object. The setup is
more extensively described in the following subsection.

1.3.1 The measurement Setup

All algorithms and reconstruction techniques introduced in this thesis are specifically
targeted to the experimental setup that is being used in the Biomedical Photonic
Imaging (BMPI) group of the University of Twente. This setup is a custom made
photoacoustic tomography setup, which was designed for the simultaneous imaging
of both ultrasound and optical properties of the measured object using only optical
energy as input. The setup consists of six components:

Laser source A laser source which is capable of emitting very short pulses is used
to generate the optical energy to illuminate the measured object. We use a Q-
switched Nd:YAG laser, delivering 10 ns pulses at a selectable wavelength of 532
or 1064 nm. This laser source can generate pulses at a repetition rate of 10 Hz,
which is useful when signal averaging is necessary to increase the signal to noise
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Figure 1.1 Instrumental top view of the passive element enriched photoacoustic
tomography (PER-PAT) setup that was used in the experiments shown in this thesis.
The algorithms presented in this thesis are targeted to this experimental setup.

(SNR) ratio of the generated signals. A cylindrical lens in combination with a
beam expander is used to widen the laser beam in only one axis while focusing
it strongly in the second axis to obtain roughly sheet illumination through the
object.

Rotary stage The object under investigation is placed on a rotary stage, which
allows different measurements to be made with each measurement having the
object rotated under a different angle. The same effect can be obtained by
allowing the laser source and ultrasound detector array to rotate with respect to
a stationary object, which is what our next generation photoacoustic computed
tomography imaging setup will use. The rotary stage can also be moved up and
down to image difference slices through the object under investigation.

Passive element(s) An array of one or more passive elements was used to allow
the imaging of ultrasound properties of the object under consideration. These
passive elements are typically hair like structures that are positioned in a vertical
direction, thus orthogonal to the imaging slice, that generate a short broadband
acoustic pulse when they are illuminated with the laser source. By allowing this
generated acoustic pulse to travel through the object, techniques of ultrasound
transmission tomography can be used to reconstruct images of the speed of
sound distribution and acoustic attenuation distribution of the object.

Ultrasound transducer array An ultrasound transducer array is used to measure
the generated photoacoustic signals, which are induced by the photoacoustic ef-
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fect upon absorption of the incident light. This transducer array consists of a set
of piezoelectric sensors that convert the generated pressure signals into electric
signals. Two different array configurations have been used for this purpose. The
first was a 128-element linear array and the second a 32-element curved array.
The piezoelectric detector elements in these arrays are elongated in the vertical
direction and narrow in the horizontal direction which makes them especially
sensitive in the imaging slice and less sensitive out of the imaging slice.

Imaging tank To make the propagation of ultrasound signals, originating from the
object and the passive elements, to the ultrasound transducer array possible,
a coupling medium is needed. This coupling medium should have the same
acoustic impedance as the object that is being measured. If a medium with a
different acoustic impedance, such as air, would be used, there would be a strong
reflection of the ultrasound signal on the air/object boundaries and therefore
a large reduction in remaining acoustic energy that would reach the detector
array. We use water, with a typical speed of sound of about 1500 m/s at room
temperature, as a coupling medium.

Amplifier and A/D converter The electric signals from the ultrasound trans-
ducer array are processed by an amplifier and A/D converter which convert
the continuous analog signals to a sampled digital representation. The 128-
element linear array was used in conjunction with a four channel amplifier and
A/D converter and a multiplexer, thus being capable of reading out four de-
tector elements per emitted laser pulse. The sampling frequency of this A/D
converter was tunable up to 200 MHz. The 32-element curved array was used
in conjunction with four sets of eight channel amplifiers and A/D converters,
allowing the simultaneous measurement of all 32 detector elements at each emit-
ted laser pulse. The sampling frequency of this A/D converter is fixed at 80
MHz.

Personal computer A personal computer was used to control the laser source and
the rotary stage and to do the processing of the digitized ultrasound signals. The
reconstruction methods and other algorithms are implemented on this personal
computer using Matlab and multi-threaded C++ code compiled as mex libraries.

An instrumental top view of this passive element enriched photoacoustic tomography
(PER-PAT) setup is displayed in Figure 1.1.

1.3.2 Measurements

As mentioned before, the goal of our PER-PAT setup is to be able to reconstruct
both ultrasound properties and optical absorption of the object under investigation.
This requires a set of three different measurements to be performed, all of which
are measurements of photoacoustic signals. The first measurement is a calibration
measurement, using a calibration object, to determine the speed of sound of the
water and the center of rotation of the rotary stage. The second measurement is a
reference measurement without any object, to determine the positions of the passive
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elements. The third measurement is the object measurement where the object under
investigation is placed on the rotary stage. All three measurements are illustrated
in Figure 1.2. We will come back and refer to these measurements in the different

Ultrasound
detector array

Light beam

Calibration

Medium

object

(a) Calibration measurement

Ultrasound
detector array Medium

Light beam

elements
Passive

(b) Reference measurement

Object

Pressure waves

Passive
elements

Ultrasound
detector array Medium

Light beam

(c) Object measurement

Figure 1.2 Illustration of the three measurements that are necessary for the recon-
struction of both the optical and ultrasound properties.

chapters of this thesis.

1.4 Thesis overview

In this thesis, four topics related to the image reconstruction in a PER-PAT setup
will be discussed. For every topic a separate chapter is used. An overview of the top-
ics/chapters is given in Figure 1.3. Some topics are related to each other as indicated
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with arrows in the figure and also the relation between the three measurements and
the topics are shown.

Ultrasound property

reconstruction

Ultrasound parameter

estimator

Optical absorption

reconstruction

Calibration

Calibration

measurement

Reference

measurement

Object

measurement

2

3 4 5

Figure 1.3 An overview of the topics and chapters presented in this thesis. The
white balloons indicate the three kind of measurements that need to be taken in order
to perform a full hybrid reconstruction. The gray rectangles indicate the four topics
and the corresponding chapter number that describes each topic. Arrows show the
inter relations between the signals and topics.

1.4.1 Research questions

To structure the research presented in this thesis, several research questions have been
proposed for each topic. We will now present a short description of each topic and
the associated research questions.

Calibration

The calibration chapter deals with an analysis of the accuracy and the presentation
of an algorithm that can be used in the PER-PAT setup to estimate the geometrical
parameters needed for image reconstruction. The research questions here are:

• Does the calibration problem have a unique solution and what are the conditions
for having a unique solution?
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• What accuracy can we theoretically expect from a calibration and how does this
depend on the chosen phantom and measurement configuration?

• How does a different speed of sound in the calibration phantom affect the cali-
bration outcome and can we correct for this easily?

• Can we implement a robust calibration algorithm that performs well with a
substantial amount of outliers?

Estimation of ultrasound parameters

In this chapter we discuss a pre-processing step necessary before the image recon-
struction of acoustic property distributions can take place. This image reconstruction
depends on projection measurements which have to be extracted from the reference
and object measurements. A maximum likelihood framework that can be used for the
extraction of these projection measurement is presented in this chapter. The research
questions here are:

• How accurate (with an accuracy possibly below the sampling frequency) can
we theoretically extract time of flight measures from photoacoustic point source
measurements and can we design a time of flight estimator that attains this
accuracy in practice?

• Can we design an estimator that operates on ultrasound transmission mode mea-
surements to estimate frequency dependent attenuation and the corresponding
speed of sound dispersion?

• How does including the Kramers-Kronig relation in the model increase the ac-
curacy of the estimate with respect to existing estimator that do not use this
extra information?

Reconstruction of ultrasound properties

Here we present our approach and results for the reconstruction of speed of sound
and attenuation distributions using our PER-PAT setup. The research questions here
are:

• Can we reconstruct speed of sound and acoustic attenuation distributions from
single passive element measurements?

• Is there a benefit in using more than one passive element in the setup to increase
the spatial resolution of the reconstruction?

• Can we deal with refraction effects, i.e., the bending of rays, that can occur in
these ultrasound property measurements?
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Reconstruction of optical absorption

Finally, we discuss the image reconstruction of optical absorption which is the main
contrast in photoacoustic imaging. We discuss the filtered backprojection method and
iterative approaches that can be used. Some improvements, in terms of convergence
speed and using the measurement model will be presented here. Also two additions
to the reconstruction will be given, being a speed of sound correction algorithm and
a motion correction algorithm. The research questions here are:

• How much improvement can we expect from iterative reconstruction algorithms
in image quality with respect to the much faster filtered back projection (FBP)
type of algorithms?

• How can preconditioning help in improving the convergence speed of iterative
reconstruction algorithms and how do we obtain a suitable preconditioner?

• How can we efficiently use an estimated speed of sound map to correct for
blurring effects caused by the false assumption of an inhomogeneous speed of
sound distribution?

• Is unwanted motion a big problem in optical absorption reconstruction and is
there an effective way to correct for this motion in the reconstruction?



2
Calibration algorithms1

Abstract

An important part of image reconstruction is the formulation of a measurement model
that includes the physics and geometry involved in the imaging problem. Typically
this model can be expressed in terms of parameters that describe the physics and
geometry. Calibration is the task of accurately determining these parameters in ad-
vance so that a correct reconstruction of the unknown image can be made. We present
a robust algorithm that can be used in our PER-PAT imaging setup, based on ex-
tracting small point source landmarks from the measured photoacoustic ultrasound
signals, for which two kind of calibration measurements need to be performed. The
two calibration measurements are in depth analyzed in order to setup a calibration
model and to get a feeling for the expected accuracy. The presented calibration al-
gorithm has been applied to all our experimental trials, some of which contained a
considerable amount of noise, without any problem.

1Part of this chapter will be communicated as:
G.H. Willemink et al, “Calibration of a photoacoustic CT imager”, IEEE Transactions on Medical
Imaging

11
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2.1 Introduction

This chapter describes calibration algorithms which are used to calibrate the geometry
of the measurement setup. Calibration is necessary to determine the exact geomet-
rical parameters needed for image reconstruction. The calibration is performed on
time of flight (TOF) measurements of small photoacoustic sources. We start this
chapter by introducing the calibration parameters and then continue with describing
the calibration measurements, which relate the TOF measurements to the calibration
parameters. The chapter concludes with the presentation of a robust algorithm to
automatically calibrate the geometry of the measurement setup with the proposed
measurements.

2.1.1 The calibration parameters

In general we can say that there are internal and external parameters involved in
describing the geometrical parameters. The internal parameters describe the mea-
surement array. The external parameters describe the center of rotation of the mea-
surement setup, the speed of sound of the reference medium and the positions of
external photoacoustic point sources. An overview of these parameters is displayed
in Table 2.1. There can be one or more external point sources, which in our case are
passive elements. The position of the external photoacoustic point source is necessary
for the reconstruction of the acoustical properties, all other parameters are necessary
for the reconstruction of both the acoustical and optical properties. We assume that
the internal parameters are fixed and do not change in between measurement ses-
sions and we assume that the external parameters are expected to change in between
measurement sessions, but remain fixed in a single measurement session.

Symbol Name Type

T Center of rotation External
c Speed of sound of the reference medium External
ps Position of the external photoacoustic point source External
pd,i Position of the ith sensor element Internal
d Spacing between two detector elements Internal
l Length of the linear array Internal
r Radius of the curved array Internal

Table 2.1 Overview of the calibration parameters

2.1.2 Measurement array geometries

We have used two kinds of measurement arrays in our experimental setup. One was a
configuration consisting of a linear array with 128 ultrasound detector elements and
the other-one was a configuration consisting of a curved array with 32 ultrasound
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(a) Linear detector array geometry
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(b) Curved detector array geometry

Figure 2.1 Schematic overview of the measurement array geometries used in our
setups. The detector elements are depicted on the left in (a) and (b) and labeled by
their position pd,i. The center of rotation is labeled with T. An photoacoustic point
source is positioned on the right in (a) and (b) and labeled by its position ps. The
detector spacing, center to center, is indicated with d, the radius of the curved array
with r and the length of the linear array with l.

detector elements. A schematic overview of both geometries, together with the cali-
bration parameters, is given in Figure 2.1. The positions of the detector elements in
both geometries can be expressed in terms of the number of detector elements Nd,
the spacing between the detector elements d and the index of the detector element
i ranging from 1 to Nd. For the curved array we also use the curvature radius r in
the parametrization. The origin of the coordinate system will be in the middle of the
measurement array, between the two center elements. This gives us for the positions
of detector elements in the curved array:

pd,i = r
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(2.1)

The positions of detector elements in the linear array can be derived from the curved
array by letting the radius grow to infinity:
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r→∞
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These positions as function of the calibration parameters will be used in subsequent
sections when the calibration algorithm is described.

2.2 Calibration measurement models

The input to the calibration measurement models are time of flight (TOF) measure-
ments from photoacoustic point sources. These TOF measurements can be obtained
with the techniques described in chapter 3, section 3.3. These measurements are then
related to the unknown calibration parameters as introduced in section 2.1.1. For
calibration of the external parameters, we have defined two separate measurements:

2.2.1 The reference measurement

The reference measurement allows us to find the position of the external photoacous-
tic point source and the speed of sound of the reference medium. The measurement
consists of measuring the TOF from all external point sources to the detector ele-
ments in the measurement array. The measurement array is rigidly connected with
the external photoacoustic point source, so there is no rotation involved in the mea-
surement. From the reference measurement we then try to recover the position of the
external photoacoustic point source and the speed of sound of the reference medium.

The measurement model used in the reference measurement relates the measured
TOF at each detector element ztof,i to the external photoacoustic point source at
position ps and the speed of sound c of the reference medium via:

ztof,i =
1

c
‖pd,i − ps‖+ nz (2.3)

where pd,i is the position of the ith detector element in the array and nz represents
additive noise. Based on further analysis in section 3.3.3 and Figure 3.8a, we know
that the additive noise is Gaussian distributed. The position pd,i of each detector
element is determined by the kind of measurement array that is being used and its
internal parameters, as given in (2.1) and (2.2). With this measurement model, we can

define the measurement function htof(c,ps) =
(

htof,i(c,ps)
)Nd

i=1
, consisting of entries:

htof,i(c,ps) =
1

c
‖pd,i − ps‖ (2.4)

Uniqueness of the measurement function

We want to solve the inverse problem, determining for a given measurement what
the unknown parameters are. Therefore it is good to investigate whether distinct
parameter settings will always result in distinct measurements, or in other words if
the measurement function is an injective function. This requirement is not required
on the whole domain of the function, instead it is good enough if the function is
injective on the domain defined by parameter values that are realistic and could be
expected to occur in practice. A property that can be useful when determining the
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injectivity of the measurement function is the behavior of the Jacobian matrix. When
the rank of the Jacobian matrix is equal to the number of input parameters over the
whole domain of interest, we know that the measurement function is injective on that
domain. The partial derivatives of the measurement function can be calculated as:

∂
∂c
htof,i = −1

c
htof,i (2.5)

∂
∂ps

htof,i =
(

ps − pd,i

) 1

c2htof,i
(2.6)

so that the whole Jacobian matrix can be constructed as:

Htof =
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(2.7)

For this matrix to have a rank of three, the minimum requirement is that we need
three measurements or more. This requirement is satisfied for both measurement
arrays having 128 and 32 different sensors. We will now investigate the uniqueness of
the measurement function for both measurement array geometries by looking at the
behavior of the Jacobian matrix. When the Jacobian matrix is not full rank, it will
become singular and the condition number will go to infinity. To see if this happens in
our situation, we calculated the condition number of the Jacobian matrix for different
parameter settings, by moving the photoacoustic point source position around, on
both measurement arrays and plotted the results in Figure 2.2a and 2.2b. What we
see from these plots is that the Jacobian matrix is not extremely well conditioned,
and has a condition number of at least 105 over the whole parameter space. This is
mainly caused by the fact that the input parameters are not scaled well with respect
to each other. To overcome this problem, we applied a different scaling to the speed
of sound and the source position. The speed of sound will be represented in [m/s]
and the source position not in [m] but in [µm]. This was implemented by multiplying
the Jacobian matrix on the right side with a pre conditioning matrix:

P =





1 0 0
0 10−6 0
0 0 10−6



 (2.8)

The results of calculating the condition number on the Jacobian matrix with scaled
input parameters are displayed in Figure 2.2c and 2.2d. After scaling, the Jacobian
matrix is overall much better conditioned. We can now clearly see for both measure-
ment arrays that there is a contour in the parameter space where the Jacobian matrix
gets ill-conditioned and is not full rank. These contours coincide with the curve on
which the detector elements are positioned, this can be seen by comparing Figure 2.1
with Figures 2.2c and 2.2d. The input domain can be divided into two subdomains,
both bounded by these contours, in which the measurement function is injective. Fur-
thermore it could be possible that a parameter setting from one side of input domain
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has a corresponding parameter setting inside the other domain which, when input
to the measurement function, will result in the same measurement. This could be a
problem in the curved measurement array, where it is likely that the photoacoustic
point source is positioned close to the observed contour, i.e., at a distance roughly
eight centimeters away from the measurement array along the x-axis. We will now
try to find out if the measurement function indeed has distinct parameter settings in
and outside the contour, sharing the same measurement.

Linear array For the linear array we can immediately see that each solution to the
measurement function with a source position on the right side of the measurement
array, thus on the right of the y-axis, has a symmetric solution with the source position
at the left side of the y-axis. Both settings have the same speed of sound c and have
mirrored source positions with respect to the y-axis. The symmetry axis is nicely
visible by comparing Figures 2.1a and 2.2c. This is however not a problem, since in
advance we already know at which side of the measurement array the photoacoustic
point source is positioned.

Curved array For the curved array, there is also a symmetry in the geometry,
which can be seen from the result of Appendix C. The symmetry is with respect to the
imaginary circle spanned by the curved array, see Figures 2.1b and 2.2d. This means
there is always a parameter setting with the source positioned inside the imaginary
circle and a parameter setting with the source positioned outside the imaginary circle
resulting in the same measurement. Both settings have a different speed of sound. The
relations between the two corresponding parameter settings [c1,ps,1]

T and [c2,ps,2]
T

are, using Appendix C, given by:

ps,2 = p0 +
r2

∥

∥ps,1 − p0

∥

∥

2

(

ps,1 − p0

)

(2.9)

c2 = c1

∥

∥ps,2 − p0

∥

∥

r
(2.10)

where p0 = [r, 0]T is the center of the imaginary circle. As indicated before, this will
be a problem when the source is positioned close to the imaginary circle.

Cramer-Rao Lower Bound of the reference measurement

We will now investigate what the theoretical lower bound of the variance of the
calibration parameters is for the reference measurement. To calculate this we use the
function htof(c,ps) which has a Jacobian matrixHtof as given in (2.7). When the time
of flight measures of all detectors are identically Gaussian distributed with variance
σ2
tof and uncorrelated, the Cramer-Rao Lower Bound (CRLB) can be calculated as[31]:

CRLB = σ2
tof

(

HT
tofHtof

)−1

(2.11)
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Figure 2.2 The condition number of the Jacobian matrix Htof of the reference
measurement. Shown are the results for both measurement arrays, the linear array
on the left and the curved array on the right, both as introduced in Figure 2.1. The
Jacobian matrix was evaluated at different values of ps and with a constant speed of
sound of c = 1500 [m/s]. The top row represents the true condition number and the
bottom row the condition number after scaling the inputs.
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Figure 2.3 This figure shows the CRLB on the parameters of a reference measure-
ment, the measurement function is given in (2.4). The plots on the left (a) and (c)
show the results where both speed of sound and the source position are unknown.
The plots on the right (b) and (d) show the results where only the source position is
unknown. The top row (a) and (b) are for the linear array geometry and the bottom
row (c) and (d) are for the curved array geometry. The internal parameters used
in the calculation are set to their true values according to the manufacturer as in
Figure 2.1. The speed of sound of the reference medium was set to 1500 m/s and
the source element was positioned along the x-axis with ps,y = 0 cm and ps,x ranging
from 0 cm to 12 cm. The uncertainty in the time of flight measurements was set to
σtof = 10−3µs.
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Where the Jacobian matrix Htof has to be evaluated at the true value of the speed
of sound and source position.

We evaluated the CRLB for both measurement array geometries with the cor-
responding internal parameters as displayed in Figure 2.1. The speed of sound in
the reference medium, which in our PER-PAT setup is water at room temperature,
was set to a value of 1500 m/s. The CRLB was then evaluated for different source
positions, where the source was moved along the x-axis. The uncertainty in the time
of flight measures was set to σtof = 10−3µs, which is reasonable according to Figure
3.7a.

Shown in Figure 2.3a and 2.3c are the extracted minimum standard deviations
from the CRLB for the linear and curved measurement array geometry respectively.
There is a lot of correlation between the speed of sound and the x-position of the
source, which can be seen by calculating the CRLB while assuming that speed of
sound is known. The CRLB plots for the source position estimation with known
speed of sound are shown in 2.3b and 2.3d. The lower bound on the x-position of the
source in that case drops significantly while the lower bound on the y-position of the
source does not change. We also see (Figure 2.3c) that when the source is positioned
closely to the imaginary circle of the curved array, the lower bound on speed of sound
and lower bound on the x-position of the source quickly increase. This effect is caused
by the symmetry in the geometry and the rank deficiency of the Jacobian matrix on
the line of symmetry. For the reference measurement with the curved array, this will
be a problem. We can thus conclude that for certain source position configurations
with the curved array, it is not possible to estimate all three parameters from only a
reference measurement.

2.2.2 The calibration measurement

The calibration measurement allows us to find the the center of rotation of the detector
array and the speed of sound of the reference medium. For this measurement we need
a calibration phantom consisting of photoacoustic point sources. In our PER-PAT
system, we use a cylindrically shaped calibration phantom made of Agar, in which
human or horse hairs are placed to function as photoacoustic point sources. The
hairs are aligned in the vertical direction, so that they are placed perpendicular to
the measurement plane. The measurement array will rotate stepwise around the
calibration phantom and at each step, time of flight measurements from detector
elements to the photoacoustic point sources are recorded. From these measurements
we then try to recover the center of rotation and the speed of sound of the reference
medium.

For a measurement array consisting ofNd detector elements, a rotation inNR steps
and Np point sources in the calibration phantom, we get Nd×NR×Np different time
of flight measurements. Via a model these measurements are related to the unknown
parameters. This model is, besides the unknown parameters, also dependent on the
ultrasound properties of the calibration phantom. For a first analysis, we will assume
that the speed of sound in the calibration phantom is equal to the speed of sound of



20 CHAPTER 2. CALIBRATION ALGORITHMS

the reference medium. In that case, the relation is given by:

ztof,i,j,k =
1

c

∥

∥pd,i −
(

Rφj
ps,k +T

)∥

∥+ nz (2.12)

where i is the index in the detector elements, j is the index in the rotation steps and k
is the index in the point sources. For convenience, the positions of the photoacoustic
point sources are not given in the measurement array coordinate system, but in a
parallel coordinate system with its center defined as the center of rotation T. The
complete measurement function for the calibration measurement is given by:

htof(c,T,ps,1, . . . ,ps,Np
) =

(((

htof,i,j,k(c,T,ps,1, . . . ,ps,Np
)
)Nd

i=1

)NR

j=1

)Np

k=1
(2.13)

with entries defined as:

htof,i,j,k(c,T,ps,1, . . . ,ps,Np
) =

1

c

∥

∥pd,i −
(

Rφj
ps,k +T

)∥

∥ (2.14)

Number of rotations and number of sources

In the calibration measurement, we will use a calibration phantom with photoacoustic
point sources which rotates around the center of rotation. We will investigate here
how many rotation steps and how many sources we need to do a calibration. Without
any rotation involved in the measurement, it is clear that we cannot determine the
center of rotation, so we need at least NR ≥ 2. The question is however, are two
different rotations enough and what kind of effect does increasing the number of
rotations have on the calibration accuracy. Similarly we can investigate what kind
of phantom configuration works best and what the minimum necessary number of
sources Np is.

We start the analysis again by looking at the Jacobian matrix. In principle,
there are three parameters that we want to estimate, the speed of sound c and the
x and y position of the center of rotation T. However, also the positions of the
photoacoustic point sources in the calibration phantom ps,k are not known, meaning
the total number of unknown parameters is more than three. The partial derivatives
of all these parameters are given by:

∂
∂c
htof,i,j,k = −1

c
htof,i,j,k (2.15)

∂
∂T

htof,i,j,k =
(

T+Rφj
ps,k − pd,i

) 1

c2htof,i,j,k
(2.16)

∂
∂ps,k

htof,i,j,k = RT
φj

(

T+Rφj
ps,k − pd,i

) 1

c2htof,i,j,k
(2.17)

The complete Jacobian matrix can be formed from these partial derivatives via the
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recursive creation of the following sub matrices:

Hc,T,j,k =









∂
∂c
htof,1,j,k

(

∂
∂T

htof,1,j,k

)T

...
...

∂
∂c
htof,Nd,j,k

(

∂
∂T

htof,Nd,j,k

)T









Hc,T,k =







Hc,T,1,k

...
Hc,T,NR,k







Hp,j,k =













(

∂
∂ps,k

htof,1,j,k

)T

...
(

∂
∂ps,k

htof,Nd,j,k

)T













Hp,k =







Hp,1,k

...
Hp,NR,k







Which we can use to setup the complete Jacobian matrix of the calibration measure-
ment:

Htof =







Hc,T,1 Hp,1

...
. . .

Hc,T,Np
Hp,Np






(2.18)

Based on this Jacobian matrix, we found out that for both measurement arrays the
minimum number of rotations NR is two and that one photoacoustic point source in
the phantom is enough to get a full rank Jacobian matrix. Of course, the accuracy
increases after increasing the number of rotations and the number of photoacoustic
point sources. The CRLB can be calculated for the calibration measurement in a
similar manner as for the reference measurement, using (2.11) where Htof is given by
(2.18). For large numbers of NR and Np, the CRLB of the calibration parameters gets
halved when NR or Np is doubled. To get a feeling for the accuracy, the CRLB was
calculated with different realistic settings. Two phantom configurations were used,
one containing only a single photoacoustic point source and the other one containing
four photoacoustic point sources. The sources in the calibration phantom were posi-
tioned in a circular configuration at a variable distance rp from the center of rotation
T and the rotation steps were uniformly distributed over a full 360◦ rotation. The
resulting values of the CRLB are displayed in Figure 2.4. Here indeed we see that
with as little as one photoacoustic point source in the phantom and two rotations we
can already do a successful calibration.

Effects of a different speed of sound in the calibration phantom

In our simplified model of the calibration measurement, we assumed that the speed of
sound inside the calibration phantom was equal to the speed of sound of the reference
medium. In practice, this might not be the case. Suppose that the speed of sound
in the phantom is different than the speed of sound in the medium, but related to
it via the relation cphantom = αcmedium. This is a valid relation when the phantom
material responds in a similar way to temperature fluctuations as the medium. Then
the measurement function can be seen as to consist of two different parts, one part
representing the ultrasound wave traveling through the reference medium and one
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Figure 2.4 The CRLB for the calibration measurement for different calibration
object configurations (Np = 1 and Np = 4) and for a different number of rotations
(NR = 2 and NR = 5). The center of rotation was set to Tx = 4 cm and Ty = 0 cm
and the speed of sound to c = 1500 m/s.



2.2. Calibration measurement models 23

representing the ultrasound wave traveling through the calibration phantom. The
two different paths are illustrated in Figure 2.5 for a circular shaped phantom with
a radius of rc. The paths are connected via the point pc which lies on the boundary

x

y

βp1

p2

pc rc

Calibration phantom

αc

Reference medium

c p1 = Rφj
ps,k

p2 = pd,i −T

Figure 2.5 Calibration phantom with a different speed of sound as the reference
medium

of the calibration phantom. The position of that point can be determined from the
geometry of the phantom, the speed of sound of the phantom, the speed of sound
of the medium, the position of the source ps,k in the phantom, the position of the
detector in the medium pd,i and is governed by Snell’s law. This results in a model
that is related to the unknown parameters via:

htof,i,j,k(c,T,ps,1, . . . ,ps,Np
) =

1

c
‖p2 − pc‖+

1

αc
‖pc − p1‖ (2.19)

where p1 and p2 are the coordinates respectively of source position k and detector
position i in the jth rotation:

p1 = Rφj
ps,k (2.20)

p2 = pd,i −T (2.21)

Using Snell’s law To calculate the point pc, Snell’s law can be enforced by using
Fermat’s principle of least time, meaning that the path between two points is the path
that can be traversed in the least time. By parametrizing the point pc as a function
of its angular position on the circular boundary β:

pc = rcn(β) = rc

[

cos(β)
sin(β)

]

(2.22)
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we can find the position of pc by searching for the angle β which minimizes the
traversed time:

βmin = argmin
β

(

1

c
‖p2 − rcn(β)‖+

1

αc
‖rcn(β)− p1‖

)

(2.23)

This minimum can be found by taking the derivative with respect to β and equating
it to zero. This results in finding a solution for β to the nonlinear equation:

αc
rc (n⊥(β))

T
(rcn(β)− p1)

‖rcn(β)− p1‖
= c

rc (n⊥(β))
T
(p2 − rcn(β))

‖p2 − rcn(β)‖
(2.24)

where n⊥(β) = [− sin(β), cos(β)]T is the vector orthogonal to n(β). This nonlinear
equation actually represents Snell’s law where the two sine terms have already been
filled in. Solving this minimization problem to find pc is not straightforward and
would result in an iterative approach. But still, we can use it to calculate the true
TOF values that would result from a circular calibration phantom with a different
speed of sound.

These true TOF values were used as input to determine the bias that is introduced
by assuming the model with one speed of sound. The configuration for the bias
simulation test consisted of a phantom having a diameter of 1.5 cm with a speed of
sound 1% higher than the surrounding medium. The results of this simulation are
displayed in Figure 2.6. The bias at different center of rotations have been evaluated.
We see that when comparing the bias effect with the CRLB, Figure 2.4, that the bias
effect is more severe that the uncertainty due to measurement noise. Therefore it is
justified to investigate how the calibration measurement model can be extended in a
simple way to model the speed of sound differences.

A simple model ignoring refraction The approach to find the position pc using
Snell’s law leads to a solution which requires solving a nonlinear equation. This is
not very convenient when we want to implement a calibration algorithm based on
such a model. However, we have seen that the bias error due to having a different
speed of sound in the calibration phantom is larger than the standard deviation on
the estimate caused by noise on the TOF measurements. So it can be advantageous
to try to correct for the bias by including the two different speeds of sound in the
measurement model. We will now explore an approach which includes the effects of
different speeds of sound and ignores refraction. We will see that this results in a
simple modification to the measurement model.

If we assume that there is no refraction, than the position pc is located on the
circle at the intersection point with the line connecting p1 and p2. By parameterizing
the point pc as a function of its position along this line:

pc = p1 + βv (2.25)

where v is the unit vector pointing from p1 to p2:

v =
p2 − p1

‖p2 − p1‖
(2.26)
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Figure 2.6 Bias in the calibration measurement estimates due to using a model
that assumes equal speed of sound in medium and phantom. The bias values are
obtained for a configuration with four sources (Np = 4), five rotation steps (NR = 5),
a speed of sound in the medium of c = 1500 [m/s], a phantom radius of rc = 1.5
[cm] and sources positioned at a radius of rp = 0.75 [cm]. The speed of sound in the
phantom was set to be 1% higher than the medium, α = 1.01.
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we can find the position parameter β resulting in the intersection point by requiring
that pc lies on the circle with radius rc. Applying this constraint:

‖p1 + βv‖2 = r2c (2.27)

results in a quadratic equation in terms of β:

β2 + 2pT
1 vβ + ‖p1‖2 − r2c = 0 (2.28)

When solving this equation, we get two solutions for β. One solution has a negative
value and the other one a positive value. The solution with the positive value gives
us the correct parameter that results in the point pc on the circle between p1 and p2.
Applying the abc-formula and picking the positive solution gives us:

β =

√

(

pT
1 v
)2 − ‖p1‖2 + r2c − pT

1 v (2.29)

So that the point pc can directly be calculated:

pc = p1 +

(
√

(

pT
1 v
)2 − ‖p1‖2 + r2c − pT

1 v

)

v (2.30)

With this result we now have a closed form expression for the measurement model
incorporating the two different speeds of sound, but ignoring refraction. The closed
form expression of the measurement model can be found by filling this solution for
pc in in (2.19):

htof,i,j,k(c,T,ps,1, . . . ,ps,Np
) =

1

c
‖p2 − p1‖+

1

c

(

1
α
− 1
)

β (2.31)

The question now is, how much will this simplified model help to get rid of the bias
due to the different speeds of sound. This was investigated by again calculating the
bias after using the true TOF values which were caused by refraction and two different
speeds of sound. The results, for different center of rotations, are displayed in Figure
2.7. When comparing these with the CRLB, Figure 2.4, we see that the bias effect is
now much smaller than the uncertainty caused by measurement noise.

2.3 Calibration procedure

Now that the necessary models and measurements required for calibration have been
introduced and analyzed, it is time to introduce the calibration procedure. The cal-
ibration procedure consists of several parts. First we will pre-process the measured
signals, resulting in the extraction of a set of time of flight measurements. Then
a classification step is performed, which estimates the number of sources from the
set of flight measurements and gives a classification of the measurements into groups
identified by the source numbers. Once the measurements are classified to a group,
we will introduce an approach to estimate the source positions and speed of sound
based on this classification result and the time of flight measurements. The reference
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Figure 2.7 Bias in the calibration measurement when using a model that incorpo-
rates speed of sound differences in medium and phantom but ignores refraction. The
bias values are obtained for a configuration with four sources (Np = 4), five rotation
steps (NR = 5), a speed of sound in the medium of c = 1500 [m/s], a phantom radius
of rc = 1.5 [cm] and sources positioned at a radius of rp = 0.75 [cm]. The speed of
sound in the phantom was set to be 1% higher than the medium, α = 1.01.
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measurement calibration problem is then completely solved. The calibration mea-
surement calibration problem requires an extra step such that also the measurements
under different rotations are merged and finally result in the estimate of a speed of
sound and center of rotation.

2.3.1 Extracting time of flight measures

The first step in the calibration procedure is the extraction of time of flight values from
the measured ultrasound signals. The measured signals will contain a time shifted
and possibly amplified/attenuated observation of the source signal in the presence
of additive noise. The source signal is generated by a small optical absorber via
the photoacoustic effect and the shape of this signal is primarily dependent on the
size of the absorber. Because the measurement conditions and calibration phantom
can change in between different measurement sessions, we might not know the exact
source signal beforehand. Therefore we seek a solution to the problem where we
simultaneously try to estimate the time of flight values, the source signal and the
amplification/attenuation factors from the measured ultrasound signals. A unique
solution to this problem cannot be found because of the ambiguity in the phase and
amplitude of the source signal with respect to the phases and amplitudes of the
measurements. To overcome this problem we will constrain the phase and amplitude
of the source signal. The phase will be constrained by enforcing the center of mass of
the source signal to be exactly in the center of the signal window. The mass coordinate
will be the time and the mass distribution will be the envelope of the source signal,
so that the constraint can be written as:

t2
∫

t=t1

t
henv(t)

t2
∫

t′=t1

henv(t′)dt′
dt =

t1 + t2
2

(2.32)

where henv(t) is the envelope of the source signal h(t), which we take as the magnitude
of the analytic signal:

henv(t) =

√

(h(t))
2
+ (H{h(t)})2 (2.33)

where H
{

·
}

stands for the Hilbert transform. The amplitude of the source signal
will be constrained by enforcing the maximum of the signal to be one.

Now given a certain source signal, time of flight values and amplifica-
tion/attenuation factors it is straightforward to predict the measured signals. We
aim to find the maximum likelihood estimate of all these unknown parameters from
the observed measurements. In the presence of additive uncorrelated Gaussian noise
with equal variance on all measurements, this results in searching for the least square
error between the observed signals and predicted signals, subject to the two source
signal constraints. The solution to this constrained least squares problem can be
found in a simple iterative procedure, which has to be initialized with a rough guess
of the source signal. The iterative solution is based on switching between solving
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for the time of flight and amplification/attenuation factors while keeping the source
signal constant and solving for the source signal while keeping the time of flight and
amplification/attenuation factors constant. In each iteration, after solving for the
source signal, the constraints are applied to the source signal. The implementation
of the different steps in the algorithm will now shortly be discussed.

Initialization As initialization for the source signal, a window in one of the source
signals can be used which approximately covers the expected source signal.

Applying the source signal constraints First the envelope of the source signal
is calculated with the use of the Hilbert transform as shown in (2.33). Then
the center of mass is calculated according to (2.32). The source signal is then
shifted with the amount of mismatch between the calculated center of mass and
the center of the signal window. This shifting is performed using a DFT and
an IDFT transform as indicated in (3.50). Next the source signal is scaled by
the inverse of its maximum so that the source signal is normalized to have a
maximum of one. The result of this step is a source signal which conforms to
the constraints.

Time of flight estimation step Given an estimate of the source signal, we can es-
timate the time of flight and amplification/attenuation factors. This estimation
step will be handled with the proposed time of flight estimator as described
in section 3.3.3. The time of flight values can be calculated on all measured
signals separately. The result of this step are the time of flight values and
amplification/attenuation factors for all measured signals.

Source signal estimation step The step of estimating the source signal will be
handled by shifting all measured signals with the corresponding estimated time
of flight values. Then the maximum likelihood estimate of the source signal
is calculated via a weighted average of the shifted measured signals. The
weighting factors are calculated based on the previously estimated amplifica-
tion/attenuation factors. Suppose the amplification/attenuation factors of the
measurements are represented in a vector a then the weights for averaging the
individual measurements is given by:

wi =
ai

‖a‖2 (2.34)

The result of this step is a new estimate of the source signal, on which the
constraints still have to be applied.

When after some iterations the results converge to a stable solution, a local minimum
to the non-linear least squares problem has been found.

The obtained time of flight values from this procedure are now relative to an
arbitrary point in the estimated source signal. In the estimated source signal we can
identify the start of the signal, by looking at the amplitude of the envelope of the
source signal. When this amplitude is above a certain threshold (based on the noise)
we can assume that the first signal from the photoacoustic point source has arrived.
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We can then find the time of flight to the center of the source by adding to the signal
start time the time necessary to travel to the center of the source. These corrected
time of flight values can then be used as input to the calibration procedure.

Extension for multiple source realizations in a single measurement

The described procedure of extracting time of flight measures from the measured ul-
trasound signals works for single source measurements. Such as is the case with the
reference measurement for a single source, section 2.2.1. When a calibration mea-
surement is performed, section 2.2.2 there can be more than one photoacoustic point
source, so that this single source approach of extracting time of flight measurements
would not work. When there is more than one source, we apply a pre-processing
step which identifies the individual source signals in a single measurement and then
apply the time of flight/template estimation algorithm on the identified regions in the
signal:

Localization based on amplitude information We first identify possible source
signals in the measured signals by looking at the envelope of each measured
signal. When the envelope exceeds a certain threshold value, we extract a
region of the measured signal around that position. On all the collected source
signal realizations we perform the previously described time of flight/template
estimation algorithm. This gives us an initial estimate of the source signal
template which is used in the next step.

Localization based on template filtering With a given initial template estimate,
we apply a matched filter to the measured signals and look for local maxima in
the resulting filtered signal. Around the obtained local maxima we extract a part
of the measured signal. On all the collected source signal realizations we perform
the previously described time of flight/template estimation algorithm. The
positions of the local maxima are taken into account to calculate the absolute
time of flight within the whole measured signal.

This two-step approach will be robust against noisy artifacts in the signal which have
a high amplitude, but have a different signal shape than the source signal template.

2.3.2 Classifying time of flight measures

When there is more than one source present in the calibration measurement or when
we expect that there could be outliers in the time of flight measurements, we cannot
simply find the calibration parameters by directly fitting the (reference or calibration)
model to the measurements. First a classification step is necessary in which time
of flight measurements are classified as being an outlier or belonging to one of the
sources present in the measurement. The number of sources to use in the calibration
phantom is a design parameter which can be chosen freely by the user. We have seen
in the previous section that more sources result in a more accurate estimate of the
calibration parameters but the calibration can in principle work with as little as one
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source. We would like our classification procedure to be flexible such that it does not
require the user to specify the number of sources beforehand but that it is estimated
from the measurements automatically. The task of the classification procedure is thus
to determine the number of sources present in the measurements and to classify each
of the time of flight measurements to one of the possible classes, where the possible
classes are all of the sources plus an outlier class for spurious measurements.

In this section we will propose an algorithm to estimate the number of classes and
to find the probability that a given measurement is member of a certain class. The
approach is based on using a mixture model to represent the measurements and the
goal is to obtain a maximum likelihood estimate of the source parameters. In the
calibration measurement the measurements are taken by rotating the sensor array at
several angles. We limit this procedure to estimate source parameters from each of
the rotations separately. The problem that remains to be solved then is finding the
correspondences between the sources identified in the different rotations. Also it could
be possible that not all sources can be identified in all rotations. These problems will
be postponed to a subsequent step, which uses the input of this classification step to
solve those problems.

An example of a calibration measurement with estimated time of flight values is
displayed in Figure 2.8. As discussed we limit ourselves in this classification step
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(b) Estimated time of flight samples

Figure 2.8 Example of a calibration measurement using the 32 element circular
array (Nd = 32), measured over five rotation steps (NR = 5) and containing three
photoacoustic point sources (Np = 3). The discontinuities between the rotation steps
are mainly caused by the rotation center not coinciding with the focal center of the
circular array.

to measurements contained in the same rotation step. The different rotations are
separated in Figure 2.8b by vertical bars. In general we can assume that within
one rotation step, the time of flight curve for a given photoacoustic point source
can approximately be represented with a second order polynomial. We will therefore
represent each class (representing a source) by the three parameters that describe a
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second order polynomial. We expect the measurement from a certain source to have
a small random deviation from this polynomial model which is zero mean Gaussian
distributed with variance σ2

z . Besides the measurements originated from one of the
photoacoustic point sources there might be spurious measurements which have to be
considered as outliers.

We will now define a model that describes these time of flight measurements.
Suppose we have a set of N time of flight measurements z = [z1, . . . , zN ]T . For each
measurement, identified by its number i we keep track of the sensor number si in the
array that measured it. Now if the ith measurement was caused by the photoacoustic
point source k with polynomial parameters xk then we have:

zi = hi(xk) + ni,k (2.35)

where
hi(xk) = xk,1s

2
i + xk,2si + xk,3 (2.36)

is the second order polynomial function that predicts the time of flight measurement
at sensor si from the photoacoustic point source with polynomial parameters xk. The
measurement is noisy and ni,k is a Gaussian random variable with variance σ2

z that
represents the noise on the ith measurement. In order to relate each measurement i to
the correct photoacoustic point source k we have to know which photoacoustic point
source is responsible for which measurement. We can represent this in a membership
indicator variable γ = [γ1, . . . , γN ]T where each γi belongs to the ith measurement. If
there are Ns photoacoustic point sources then γi ∈ {0, 1, . . . , Ns}. A value of γi = k
then indicates that the ith measurement was caused by the kth photoacoustic point
source and a value of γi = 0 indicates that the ith measurement was an outlier and
is not caused by any of the Ns photoacoustic point sources. In summary, for the ith

measurement zi with membership indicator γi we have the relation:

zi =

Ns
∑

k=1

Ik(γi)
(

hi(xk) + nk

)

+ I0(γi)no (2.37)

where Ik(γi) is an indicator function:

Ik(γi) =

{

1 γi = k
0 γi 6= k

(2.38)

and the random variable no represents outlier noise, which is uniformly distributed
over the measurement space [zmin, zmax]. The information associated with each mea-
surement zi is summarized in Table 2.2. Based on this measurement model, we get
the following likelihood function:

p(zi|X , γi) =

Ns
∑

k=1

Ik(γi)
1√
2πσz

e
− 1

2

r2i (xk)

σ2
z + I0(γi)

1

v
(2.39)

where X = (x1, . . . ,xNs
) is the set containing the parameters of the photoacoustic

point sources, the value of v = zmax−zmin is equal to the total size of the measurement



2.3. Calibration procedure 33

Item Domain Description

zi [tmin, tmax] Observed time of flight
si {1, . . . , Nd} Sensor that registered the measurement
γi {0, . . . , Ns} Source number responsible for this measurement

Table 2.2 Overview of the information that is related to each measurement zi in
the grouping within each rotation step.

space and ri(x) = hi(x) − zi represents the residue of the ith measurement. The
individual measurements zi can be combined in a single likelihood function. The
combined likelihood of having a set of Ns second order polynomial and membership
variables γ from an observed measurement z is given by:

p(z|X ,γ) =

N
∏

i=1

p(zi|X , γi) (2.40)

A possible solution to the problem of finding the most likely set of second order poly-
nomial functions describing the data can now be found by maximizing this combined
likelihood function. By finding this maximum, each measurement will be fully as-
signed to the group that is most likely. Sometimes however, a measurement might be
positioned on the intersection of two polynomial curves, meaning that it could have
originated quite well from either one of the two sources. Also it might be possible that
a measurement could equally well be an outlier or inlier. To identify these situations
in a natural way, we can first find the maximum likelihood estimate of x, indepen-
dent on γ and then find the probability that a certain measurement is member of
one of the groups. To find the likelihood function of x, independent on γ we have to
marginalize over the γ variable. For each of the individual measurements zi we get
the marginalized likelihood function:

p(zi|X ) =

Ns
∑

γi=0

p(zi, γi|X ) =

Ns
∑

γi=0

p(zi|X , γi)p(γi|X ) (2.41)

This involves the prior distribution of the membership variables p(γi|X ). If nothing
is known in advance about the number of measurements in each of the Ns +1 groups
then we have to use the non-informative prior:

p(γi|X ) =
1

Ns + 1
(2.42)

The resulting expression for the individual marginalized likelihoods is then:

p(zi|X ) =
1

(Ns + 1)
√
2πσz

(

Ns
∑

k=1

e
− 1

2

r2i (xk)

σ2
z +

√
2πσz

v

)

(2.43)
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And the final marginalized likelihood function involving all measurements is given by
the product of all individual marginalized likelihoods:

p(z|X ) =

N
∏

i=1

p(zi|X ) (2.44)

Incorporating different a-priori knowledge on the class distributions is straightforward.
An illustration of the obtained likelihood function is displayed in Figure 2.9a and
2.9b for two different settings of v. The figures show a two class situation with
one Gaussian inlier class, Ns = 1, and a uniform outlier class. Both likelihoods are
displayed together with the marginalized likelihood. For better visualization, the
marginalized likelihood is scaled to have the same height as the Gaussian likelihood.

With the help of the a-priori and marginalized likelihood we can calculate the
probability of a certain measurement zi belonging to group γi using the estimate of
the most likely set of polynomial functions describing the data, X̂ :

p(γi|zi, X̂ ) =
p(zi, γi|X̂ )

p(zi|X̂ )
=

p(zi|X̂ , γi)p(γi|X̂ )

p(zi|X̂ )
(2.45)

For the probability of membership of one of the photoacoustic point source groups
k > 0 we get:

p(γi = k|zi, X̂ ) =
e
− 1

2

r2i (x̂k)

σ2
z

Ns
∑

k′=1

e
− 1

2

r2i (x̂
k′ )

σ2
z +

√
2πσz

v

(2.46)

and the probability of a measurement being an outlier γi = 0, thus not being part of
one of the Ns photoacoustic point sources, is given by:

p(γi = 0|zi, X̂ ) =

√
2πσz

w
Ns
∑

k′=1

e
− 1

2

r2i (x̂
k′ )

σ2
z +

√
2πσz

v

(2.47)

Now the situation when a measurement is obtained at an intersection between the
curves of two different photoacoustic point sources can be identified from the mem-
bership probability. Both membership probabilities are plotted for a range of residue
values in the two class case in Figure 2.9c and 2.9d for two settings of T .

Finding the most likely set of groups of measurements belonging to the same
photoacoustic point source comes down to finding the maximum of either the com-
plete likelihood function (2.40) or the marginalized likelihood function (2.44). We
will discuss both approaches and finally use the approach based on maximizing the
marginalized likelihood function in the proposed algorithm. Maximizing the complete
likelihood function means a hard classification of the measurements is performed, i.e.,
a measurement belong completely to one group and measurements can be outlier
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or inlier and there is no smooth transition between these classes. Maximizing the
marginalized likelihood function gives us a soft classification where the probability
can be calculated that a certain measurement belongs to a certain class with (2.46).

Maximizing a likelihood function, involving the product of a set of individual
likelihood functions, can equivalently be done by minimizing the cost function which
is obtained by applying the − log[·] operation on the likelihood function. The resulting
cost function is a sum of individual cost functions. In the presentation of the cost
functions for both approaches we will use a vector of residues at each measurement:

ri =







ri,1
...

ri,Ns






with ri,k = ri(xk) (2.48)

We will now discuss the cost functions that result from maximizing the likelihood
p(z|X ,γ) and maximizing the marginalized likelihood p(z|X ). Finding the maximum
of the first likelihood function (2.40), can be done in two steps. First the value of γ̂
that gives the maximum:

γ̂ = argmax
γ

p(z|X ,γ) (2.49)

can be calculated. This has the solution:

γ̂i =























kmin

r2i,kmin

σ2
z

< T

0
r2i,kmin

σ2
z

≥ T

(2.50)

with
kmin = argmin

k∈{1,...,Ns}
r2i,k (2.51)

and

T = −2 log

[√
2πσz

v

]

(2.52)

Filling in this result for γ̂ in the complete likelihood function and converting it to a
cost function gives us:

C1(X ) = − log
[

p(z|X , γ̂)
]

= N log
[
√
2πσz

]

+

N
∑

i=1

ρ1
(

ri
)

(2.53)

with

ρ1
(

ri
)

=























1
2

r2i,kmin

σ2
z

r2i,kmin

σ2
z

< T

1
2T

r2i,kmin

σ2
z

≥ T

(2.54)
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This is the cost function of the complete likelihood which now needs to be minimized
for X . The cost function thus consists of two parts and has a discontinuity in the
first derivative at r =

√
Tσz. Now in the second case, when using the marginalized

likelihood function, the cost is simply given by:

C2(X ) = − log
[

p(z|X )
]

= N log
[

(Ns + 1)
√
2πσz

]

+

N
∑

i=1

ρ2
(

ri
)

(2.55)

with

ρ2
(

ri
)

= − log

[

Ns
∑

k=1

e
− 1

2

r2i,k

σ2
z +

√
2πσz

v

]

(2.56)

The cost function of the marginalized likelihood is a smooth function. Both cost
functions are displayed in Figure 2.9e and 2.9f for two settings of T with Ns = 1. In
this Figure, we also show the non-robust quadratic cost function that would result
from the outlier free assumption. The problem we are facing now is to find the
minimum of the cost function. The number of groups Ns is unknown a priori, it
needs be estimated as well, and the cost function has local minima which make it a
difficult function to optimize. To find the global maximum and the number of groups
we propose a strategy based on RANSAC[32].

RANSAC is an algorithm which can be used to fit the parameters of a model to
measurements in the presence of outliers. For a given parameter setting, residues to all
measurements can be calculated. RANSAC aims to find the parameter setting which
minimizes the number of outliers, meaning it minimizes the following cost function:

ρRANSAC(r) =



















0
r2

σ2
z

≤ T

1
r2

σ2
z

> T

(2.57)

the threshold T decides whether a measurement with residue r should be classified as
inlier or outlier. The approach to minimize the RANSAC cost function is based on
the random sampling of a large number of subsets from the complete measurement
set. The size of each sampled subset NS,min is chosen to be as small as the minimum
number of measurements required to obtain a fit to the model. Suppose the mea-
surements participating in the set are given by S =

(

i1, . . . , iNS,min

)

then we obtain
the model fit by solving for x from zS = hS(x). For every sampled set, the obtained
parameters from the model fit are used to calculate residues on all measurements.
Then the cost function ρRANSAC is applied to classify each of the residues and the
result is summed. The first encountered set which has a cost lower than a prede-
fined threshold or the set which has the lowest cost (i.e. has the most inliers) over
all sampled sets after a maximum number of trials is chosen as the final set. This
final set identifies the inliers and outliers in the data. The final inlier set can be used
in a subsequent least squares optimization to find the robust parameter estimate of
x. Improved algorithms of the RANSAC algorithm have been proposed, such as the
MLESAC[33] and MAPSAC[34] algorithms by using different cost functions.
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(f) Cost functions with T = 32

Figure 2.9 A two class case with Ns = 1. Illustration of the robust likelihoods,
inlier/outlier probabilities and robust cost functions for two different settings of

T = −2 log
[√

2πσz

v

]

. The distributions and functions are a function of the residue r

normalized by the standard deviation σz.
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To find the number of groups Ns and the global minimum of C(X ) we propose
to use an incremental procedure, where in each iteration the number of groups Ns

is incremented by one, until we find no new groups anymore. We start by setting
the number of groups to Ns = 1 and find the global minimum of the resulting cost
function C(X ) = C(x1) using a RANSAC based approach. In the next iteration Ns

is incremented and we have to find the global minimum of C(X ) = C(x1,x2). We
can get very close to this global minimum by using x̂1 obtained from the previous
iteration and minimizing C(x̂1,x2) only for x2 using a RANSAC based approach.
The global minimum can then be found by minimizing the function with respect to
the complete parameter vector X where we use as an initial estimate the outcome of
the RANSAC based approach. This procedure of incrementing Ns can be iterated
until there is reason to believe that there are only outliers left in the data set. Some
necessary relations that are used in the proposed method are outlined in the next
part of the section. An overview of the complete algorithm in pseudo code is given
at the end of the section in Figure 2.10.

We will now discuss how we can minimize the cost functions C1(X ) and C2(X ),
starting from an initial estimate X̂ (1) in the neighborhood of the minimum. For both
cost functions, we will derive a weighted least squares cost function having the form
of:

Q(X , X̂ (1)) =

Ns
∑

k=1

N
∑

i=1

r2i (xk)wi,k(X̂ (1)) (2.58)

where the difference between minimizing C1(X ) and C2(X ) can be found in the weight
function wi,k(X̂ (1)). The weight function is dependent on the initial estimate and can

be recalculated each time a new estimate has been found from minimizing Q(X , X̂ ).
From this equation it can be seen that for each group k the minimum of Q can be
found independently on the other groups, by minimizing the sum of squared residuals.
Suppose we want to find the minimum at the jth iteration. The minimum can be
found by equating the gradient of the cost function to zero and solving the resulting
system of equations, for the kth group we get for the gradient of the cost function:

∂Q

∂xk

= 2

N
∑

i=1

∂ri,k
∂xk

ri(xk)wi,k(x̂
(j)) (2.59)

When the residue function is a linear function of the parameters a closed form solution
can be found by solving the linear system of equations:

HT
kW

(j)
k Hkxk = HT

kW
(j)
k z (2.60)

where Hk is the Jacobian matrix:

Hk =













(

∂r1,k
∂xk

)T

...
(

∂rN,k

∂xk

)T













(2.61)
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and W
(j)
k a diagonal weight matrix:

W
(j)
k = diag

(

w1,k(X̂ (j)), . . . , wN,k(X̂ (j))
)

(2.62)

The closed form solution of the minimum x̂
(j+1)
k of Q is then given by:

x̂
(j+1)
k = (HT

kW
(j)
k Hk)

−1HT
kW

(j)
k z (2.63)

We will now discuss how to obtain the weight function wi,k(X̂ ). For the cost function
C1(X ), when looking at ρ2(ri), we see that for every measurement zi that only the
group k (if any) which has k = kmin and a residue smaller than the threshold T will
be of influence and have a weight of one. All groups having a higher residue will have
a weight of zero. If we use the result of the previous iteration, X̂ to calculate this
threshold T and kmin, we get the following weight function:

wi,k(X̂ ) =











1 if k = kmin and
r2i (x̂k)

σ2
z

< T

0 otherwise

(2.64)

The marginal likelihood function, with cost function C2(X ) is difficult to optimize, it
is a non-convex function. An efficient way to maximize a marginal likelihood function,
like the one in our problem, is to use the Expectation Maximization (EM) algorithm.
The EM algorithm treats the marginalized variable (γ in our case) as an unobserved
random variable, whose probability function can be calculated from the observations
z and a guess of the parameter vector X̂ . Then the expectation of the likelihood with
respect to the unobserved variable is taken. The resulting expression, which is much
easier to maximize then the marginal likelihood, is maximized. A useful property of
the EM algorithm is that the cost is guaranteed to decrease in every iteration, until a
stationary point (local minimum) of the cost function is reached. We will now see how
applying the EM algorithm will give us the necessary weight to optimize C2. We start
by calculating the expectation of the log likelihood with respect to the unobserved
variable γ:

Q′
2(X , X̂ ) = E

γ|z,X̂

[

log
[

p(z,γ|X )
]

]

=
∑

γ∈Γ

log
[

p(z,γ|X )
]

p(γ|z, X̂ ) (2.65)

=

N
∑

i=1

Ns
∑

γi=0

(

log
[

p(zi, γi|X )
]

p(γi|zi, X̂ )

)

(2.66)

By using the relation p(zi, γi|X ) = p(zi|γi,X )p(γi|X ), dropping constant terms not
dependent on X or X̂ and taking the negative of the function, we get the equivalent
function suitable for minimization:

Q2(X , X̂ ) =

N
∑

i=1

Ns
∑

k=1

r2i (xk)p(γi = k|zi, X̂ ) (2.67)
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from which we can identify the weight function resulting from the EM algorithm:

wi,k(X̂ ) = p(γi = k|zi, X̂ ) =
e
− 1

2

r2i (x̂k)

σ2
z

Ns
∑

k′=1

e
− 1

2

r2i (x̂
k′ )

σ2
z +

√
2πσz

v

(2.68)

With these two different implementations of the weight function wi,k(X̂ ), (2.64) and
(2.68), we can perform one step of the iteration in the minimization process of C1 or
C2 respectively as shown in (2.63). The Jacobian matrix needed in the iteration, be-
longing to the second order polynomial function h(xk), is in our case simply calculated
as:

Hk =







s21 s1 1
...

...
...

s2N sN 1






(2.69)

A useful quantity to define for the algorithm is the expected number of measure-
ments in a certain class. The expected number of measurements in class k, given the
estimated parameter setting X̂ can be calculated as:

N̂k = E
γ|z,X̂

[

N
∑

i=1

Ik(γi)

]

=
N
∑

i=1

p(γi = k|zi, X̂ ) =
N
∑

i=1

wi,k(X̂ ) (2.70)

The number of outliers, including the measurements which have not been assigned to
a certain photoacoustic point source, can then be calculated from N̂0. To guide the
sampling procedure in the RANSAC algorithm, we can sample new measurements in
a subsequent iteration in a weighted manner, using X̂ from the previous iteration.
The probability of sampling the ith measurement, p(i), will then be according to:

p(i) =
p(γi = 0|zi, X̂ )

N̂0

(2.71)

This ensures that measurements which are not yet likely to be classified as part of an
photoacoustic point source group get a higher probability to be selected as model fit
candidates in the RANSAC algorithm.

RANSAC is a random procedure with random outcomes. In order to guaran-
tee with a certain probability ǫ that we have found a solution after a limited num-
ber of trials, we can calculate the expected number of minimal trials to ensure this
probability[32]:

N̂trials,min =

















log(1− ǫ)

log

(

1−
(

Ntarget

N̂0

)NS,min
)

















(2.72)

Here Ntarget is the number of measurements we would like to be part of the new group
and NS,min is the minimal set size needed to find a fit to the model.
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In our case the minimal set size is NS,min = 3 and finding a model fit for a minimal
set S = (i1, i2, i3) is done via:

x = H−1
S zS with HS =





s2i1 si1 1
s2i2 si2 1
s2i3 si3 1



 (2.73)

Care should be taken because not all combinations of measurements can be used
to find an initial parameter estimate. All measurements should come from different
sensors, otherwise the matrix HS becomes singular and no unique solution exists.
Therefore we introduce a degeneracy constraint which states that only sets in which
all measurements come from different sensors are valid to be used in the RANSAC
procedure:

si1 6= si2 ∧ si1 6= si3 ∧ si2 6= si3 (2.74)

The resulting algorithm is displayed in Figure 2.10 in pseudo code. The output
of the algorithm is the estimated number of sources N̂s and the set X̂ consisting of
the estimated source parameters

(

x̂1, . . . , x̂N̂s

)

. This set is the global maximum of

the likelihood X̂ = argmaxX p(z|X ). By using this estimate, the classification of a
measurement zi to a class k ∈ {1, . . . , N̂s} can be calculated with the probability
measure p(γi = k|zi, X̂ ).

2.3.3 Estimating speed of sound and source positions

From the previous step, we have estimated the number of sources N̂s and the classifi-
cation probability of each measurement into the source classes. We will now continue
by showing how to use these results in the calibration procedure.

Reference measurement

In the reference measurement, we want to estimate the speed of sound c and the
positions of the N̂s passive elements P =

(

ps,1, . . . ,ps,N̂s

)

. To solve this estimation
problem, we setup a likelihood function of these parameters given the measurements,
p(z|c,P), and will use the maximum of this likelihood function as the estimate of
our parameters. This likelihood function is very similar to the likelihood function
used in the previous step, the only difference is that we change the measurement
function hi from a polynomial function with linear parameters to a function of c and
pk with non-linear parameters. It could be that in the previous step, we have found
an apparent source k which can be well described with a polynomial function, but
in fact is not related to a physical photoacoustic point source. In that case, fitting a
model using c and pk to all of the measurements classified to the apparent source will
fail. These apparent sources have to be identified and can be removed in this step of
the algorithm, we will come back to this later. Now given the speed of sound and the
source position, the residue of the ith measurement assuming membership of the kth

class is ri(c,pk) = hi(c,pk)− zi and the measurement function is given by:

hi(c,pk) =
1

c

∥

∥pd,si − pk

∥

∥ (2.75)
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Algorithm Grouping measurements per rotation

1. Initialize by setting Ntarget = Nd, N̂s = 0 and X̂ = ()
2. While Ntarget is at or above threshold

3. Set k = N̂s + 1

4. Calculate total number of trials N̂trials,min using (2.72)

5. For Ntrials = 1 to N̂trials,min

6. Sample a minimal set S of NS,min measurements, weighted according
to (2.71) and conform the degeneracy constraint (2.74)

7. Estimate model parameters x̂
(1)
k by fitting the minimal set S

to the model using (2.73)

8. Evaluate cost C2(X̂ , x̂
(1)
k ) using (2.55)

9. If cost is lowest so far

10. Calculate local minimum x̂
(end)
k from starting point

(

X̂ , x̂
(1)
k

)

via iterations of (2.63) using weights from (2.68)

11. Calculate local minimum X̂best =
(

x̂
(end)
1 , . . . , x̂

(end)
k

)

from starting

point
(

X̂ , x̂
(end)
k

)

via iterations of (2.63) using weights from (2.68)

for all k ∈ {1, . . . , N̂s}
12. Set lowest cost to C2(X̂best)

13. Recalculate N̂k using (2.70)
14. End if

15. If reached maximum number of trials and N̂k < Ntarget

16. Decrease Ntarget by one
17. If Ntarget is below threshold
18. Stop the algorithm
19. End if

20. Recalculate N̂trials,min using (2.72)
21. End if
22. End for

23. Set X̂ = X̂best

24. Increment N̂s by one

25. Calculate number of unassigned measurements N̂0 using (2.70)

26. If N̂0 < Ntarget

27. Set Ntarget = ⌊N̂0⌋
28. End if
29. End while

Figure 2.10 The measurement grouping algorithm

The likelihood function given a measurement zi is then:

p(zi|c,P) =
1

(N̂s + 1)
√
2πσz





N̂s
∑

k=1

e
− 1

2

r2i (c,ps,k)

σ2
z +

√
2πσz

v



 (2.76)
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Figure 2.11 Example of classification results of the grouping per rotation algo-
rithm. (a) Shows all measurements for a given rotation. The figures (b)-(f) show the
probability (intensity coded) of a measurement belonging to that particular class.
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The combined likelihood, involving all measurements, is the product of this likelihood
function over all measurements. Maximizing the combined likelihood can be done
efficiently with the EM-algorithm, which requires an initial estimate of the parameters
c and P to perform the first E-step of the algorithm. This initial estimate is necessary
to calculate the probability distribution of the marginalized variable γ. Instead of
calculating this probability distribution given an initial estimate of c and P, we can
do a better job by calculating the distribution of γ with respect to the final estimate
of the polynomial source parameters X̂ . We have seen that the polynomial function
hi(xk) models the data quite well, meaning that the probability p(γ|z, ĉ, P̂) can also
be predicted quite well from p(γ|z, X̂ ). To initialize the EM-algorithm, we will start
by finding:

(

ĉ(1), P̂(1)
)

= argmax
c,P

E
γ|z,X̂

[

log
[

p(z,γ|c,P)
]

]

(2.77)

= argmin
c,P

Q(c,P, X̂ ) (2.78)

where the Q function, or the first E-step of the EM algorithm, is given by:

Q(c,P, X̂ ) =

N
∑

i=1

N̂s
∑

k=1

r2i (c,pk)wi,k(X̂ ) (2.79)

Once this function is minimized, we can start the EM-algorithm by iteratively min-
imizing the Q function of the E-step, starting from the initially obtained minimum
ĉ(1) and P̂(1):

(

ĉ(j+1), P̂(j+1))
)

= argmax
c,P

E
γ|z,ĉ(j),P̂(j)

[

log
[

p(z,γ|c,P)
]

]

(2.80)

= argmin
c,P

Q(c,P, ĉ(j), P̂(j)) (2.81)

where the Q function, obtained with the E-step of the EM algorithm, is given by:

Q(c,P, ĉ, P̂) =

N
∑

i=1

N̂s
∑

k=1

r2i (c,pk)wi,k(ĉ, P̂) (2.82)

The weight function used here, wi,k(c, P̂), is very similar to the weight function used

in the classification step wi,k(X̂ ). Instead of using the residues of the polynomial

function the residues of the measurement function with parameters ĉ and P̂ is used:

wi,k(ĉ, P̂) =
e
− 1

2

r2i (ĉ,p̂k)

σ2
z

N̂s
∑

k′=1

e
− 1

2

r2i (ĉ,p̂
k′ )

σ2
z +

√
2πσz

v

(2.83)
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The M-step of the EM-algorithm now comes down to finding the weighted non-
linear least squares fit for the parameters x =

(

c,P
)

. When an initial estimate x(1)

is available which is already somewhere close to the minimum, the Gauss-Newton
method[35] is the best method, with respect to convergence speed, to solve the min-
imization problem. In the first iteration of the EM-algorithm however, we have no
initial estimate close to the expected minimum. Not much is known on the positions
of the sources, P, and only a rough guess is available. A better initial guess can be
found for the speed of sound c, which is expected to be somewhere near 1500 m/s.
Therefore we propose to start with optimizing a problem of reduced complexity by
considering the speed of sound fixed at 1500 m/s and solving only for the source
positions. The reduced problem can also be solved with the Gauss-Newton method.
The hereby obtained source positions will be used in a subsequent step and optimized
together with the speed of sound using the Gauss-Newton method. In order to use the
Gauss-Newton method, we need to calculate the Jacobian matrix of the residue vector
function, i.e., the function that returns for a given parameter x allN×N̂s residues. We
will define the residue vector function as r′(x) =

(

r′1(c,ps,1), . . . , r
′
N̂s

(c,ps,N̂s
)
)

, where

for each source k the residue vector is r′k(c,ps,k) =
(

r′1,k(c,ps,k), . . . , r
′
N,k(c,ps,k)

)

and for each source k and measurement i we have r′i,k(c,ps,k) = ri(c,ps,k)
√
wi,k.

Minimizing the Q function is then equivalent to minimizing ‖r′(x)‖2. Constructing
the Jacobian matrix of this function r′(x) for a given estimate x(l), where l is the
iteration number of the Gauss-Newton method, is then according to:

H
(l)
c,k =









∂
∂c
h
(l)
1,k

√
w1,k

...
∂
∂c
h
(l)
N,k

√
wN,k









H(l)
pk

=













(

∂
∂ps,k

h
(l)
1,k

)T √
w1,k

...
(

∂
∂ps,k

h
(l)
N,k

)T √
wN,k













H(l) =









H
(l)
c,1 H(l)

p1

...
. . .

H
(l)

c,N̂s
H(l)

pN̂s









(2.84)

where the partial derivatives are given by:

∂

∂c
h
(l)
i,k =

−1

c(l)
hi

(

c(l),p
(l)
s,k

)

(2.85)

∂

∂ps,k

h
(l)
i,k =

(

p
(l)
s,k − pd,si

) 1
(

c(l)
)2

hi

(

c(l),p
(l)
s,k

) (2.86)

and the weights can be obtained from the weight function and the estimate of the
parameters in the jth iteration of the EM-algorithm:

wi,k =







wi,k(X̂ ) j = 0

wi,k(ĉ
(j), P̂(j)) j > 0

(2.87)
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The Gauss-Newton iterations required to optimize the complete parameter vector x
in a given iteration of the EM-algorithm are given by:

x̂(l+1) = x̂(l) −
(

H(l)TH(l)
)−1

H(l)T r′(x̂(l)) (2.88)

and the Gauss-Newton iterations required to optimize the source position of source k
given an initial guess of the speed of sound c = 1500 m/s are given by:

p̂
(l+1)
s,k = p̂

(l)
s,k −

(

H(l)T
pk

H(l)
pk

)−1

H(l)T
pk

r′k(1500, p̂
(l)
s,k) (2.89)

As mentioned before, the data could obtain apparent sources. An apparent source is
a set of measurement points that can be well described with a polynomial function
but does in fact not represent a physical source. We can identify these cases by
investigating how well the model hi(c,pk) fits the class measurements. A measure
used before to quantify the model fit was the expected number of measurements in a
class k, we will use this measure here again, which is now defined as:

N̂
(j)
k = E

γ|z,ĉ(j),P̂(j)

[

N
∑

i=1

Ik(γi)

]

=

N
∑

i=1

wi,k(ĉ
(j), P̂(j)) (2.90)

When the expected number of measurements in a class are below a threshold, we will
remove the corresponding source from the estimation procedure.

The final algorithm to estimate speed of sound c and source positions P from
measurements z, an estimated number of sources N̂s and a grouping of measurements
into sources described by X̂ is given in Figure 2.12. An example of a reference
measurement calibration on a setup with 9 photoacoustic point sources is displayed
in Figure 2.13.

Calibration measurement

In the calibration measurement, the goal is to estimate the speed of sound c and center
of rotation T from time of flight measurements z. To accomplish this, a calibration
phantom with a number of sources is used. To make the optimization procedure
feasible, the positions of the sources in the phantom are added to the optimization
problem as unknown parameters. Directly estimating all these parameters without
a good initial estimate is not possible due to the many local minima present in the
optimization problem. We will discuss here first the task of estimating the relative
source positions in each rotation and the speed of sound. In the previous step we
have handled all rotations R ∈ {1, . . . , NR} separately. For each rotation we have
estimated the number of sources visible in that rotation, N̂s,R, and a set of polynomial

parameters X̂R =
(

x̂1, . . . , x̂N̂s,R

)

which identify the measurements belonging to each

particular source. In this step we will combine the measurements of all rotations
and aim to estimate the global speed of sound and relative source positions in each
rotation. To each source from each rotation, we assign a unique number and use an
indicator variable γ′

i to indicate to which source number a measurement belongs. The
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Algorithm Estimation of speed of sound and source positions

1. Set j = 0

2. For k ∈ {1, . . . , N̂s}
3. Estimate p̂s,k using (2.89), starting from p

(1)
s,k = ps,guess

4. End for

5. Set
(

ĉ(1), P̂(1)
)

=
(

1500, p̂s,1, . . . , p̂s,N̂s

)

6. While
∥

∥

(

ĉ(j), P̂(j)
)

−
(

ĉ(j+1), P̂(j+1)
)∥

∥ > ǫ
7. Increment j by one
8. Calculate weights using (2.83)

9. Remove sources which have N̂
(j)
k below a threshold using (2.90)

10. If sources have been removed
11. Recalculate weights using (2.83)
12. End if

13. Estimate x̂ using (2.88), starting from x(1) =
(

ĉ(j), P̂(j)
)

14. Set
(

ĉ(j+1), P̂(j+1)
)

= x̂
15. End while

16. Set
(

ĉ, P̂
)

=
(

ĉ(j+1), P̂(j+1)
)

Figure 2.12 The speed of sound and source positions estimation algorithm
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Figure 2.13 Example of applying the estimation of speed of sound and source
positions algorithm to a reference measurement. The reference measurement was
obtained from a setting with 9 photoacoustic point sources.

total number of sources will then be N̂ ′
s =

∑NR

R=1 N̂s,R. The numbering of source
numbers will be such that a group number γi = k from the previous step, obtained
in rotation number Ri, will map to the unique source number γ′

i = k′Ri
+ k, where

k′R =
∑R−1

R′=1 N̂s,R′ is an offset number for the Rth rotation. We will stack the relative



48 CHAPTER 2. CALIBRATION ALGORITHMS

source positions in the set P ′ =
(

p′
s,1, . . . ,p

′
s,N̂ ′

s

)

and use the complete set of source

parameters X̂ ′ =
(

X̂1, . . . , X̂NR

)

. The information that will be associated to each
measurement zi, where i ∈ {1, . . . , N × NR}, in this step is displayed in Table 2.3.
Formulating the marginalized likelihood of the global speed of sound c and relative

Item Domain Description

zi [tmin, tmax] Observed time of flight
si {1, . . . , Nd} Sensor that registered the measurement
Ri {1, . . . , NR} Rotation number of this measurement

γ′
i {0, . . . , N̂ ′

s} Source number responsible for this measurement

Table 2.3 Overview of the information that is related to each measurement zi
in the global speed of sound/relative position estimation used for the calibration
measurement

source positions P ′ for the calibration measurement can be done in a similar way as
finding speed of sound and source positions likelihood of the reference measurement.
However, because measurements and sources are strictly related to a single rotation
number, the prior distribution on γi is a bit different and the resulting marginalized
likelihood function becomes:

p(zi|c,P ′) =
1

(N̂s,Ri
+ 1)

√
2πσz





∑

k∈SRi

e
− 1

2

r2i (c,p′
s,k)

σ2
z +

√
2πσz

v



 (2.91)

where the set SR = {k′R + 1, . . . , k′R + N̂s,R} contains the source numbers associated
to the rotation number R. Maximizing this likelihood can be done with a similar
EM-algorithm as given in Figure 2.12. The only difference will be in the calculation
of the weights wi,k. The weights used when j = 0, i.e., the initialization of the
EM-algorithm, are now given by:

wi,k(X̂ ′) =







wi,(k−k′
Ri

)(X̂Ri
) k ∈ SRi

0 otherwise
(2.92)

and the weights used when j > 0 will be:

wi,k(ĉ, P̂ ′) =







wi,(k−k′
Ri

)(ĉ, P̂Ri
) k ∈ SRi

0 otherwise
(2.93)

Using these definitions of the weights, we can use the algorithm described in Figure
2.12 to estimate ĉ and P̂ ′. This gives us an intermediate results for the calibration
measurement. In the next step we have to determine the absolute source positions and
the number of sources by introducing the center of rotation as an extra parameter.
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Figure 2.14 Example of applying the estimation of speed of sound and (relative)
source positions algorithm to a calibration measurement. The calibration measure-
ment was obtained from a calibration phantom consisting of 4 photoacoustic point
sources. Each figure shows the estimated relative source position using measurements
only from that individual rotation step.

Accuracy of calibration

To get an idea of the accuracy of the estimated parameters, we will now find an esti-
mate of the covariance matrix Pxx of the estimated parameters. In the last iteration
of the Gauss-Newton procedure in the M-step (2.88), we have linearized the rela-
tion between the estimated parameters x̂ and residuals r′. In terms of the weighted
measurements z′ this linearized relation is equivalently given by:

x̂(l+1) = b(l) +
(

H(l)TH(l)
)−1

H(l)T z′ (2.94)

= b(l) +Az′ (2.95)

where the weighted measurements are related to the observed measurements via z′ =
Wz and the weight matrix is given by:

W =









diag
(√

w1,1, . . . ,
√
wN,1

)

...

diag
(√w1,N̂s

, . . . ,√wN,N̂s

)









(2.96)

From this linear transformation of the measurements with known covariance Pzz =
Iσ2

z we can obtain an estimate of the covariance matrix of the estimated parameters
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via:
P̂xx = AWPzzW

TAT = AWWTATσ2
w (2.97)

2.3.4 Estimating speed of sound and the center of rotation

In the calibration measurement, we need to estimate speed of sound and the center of
rotation. From the previous step we have obtained a set of relative source positions
P̂ ′ and an estimate of the speed of sound ĉ. Besides that, we also have an estimate of
the covariance matrix describing the uncertainty of the estimated parameter vector.
We will now continue by including the center of rotation in the estimate. First an
initial guess is calculated based on the estimates from the previous step and finally
this initial estimate is used in the optimization procedure of the complete likelihood
function p(z|c,T,P).

Initial guess

The approach used to find an initial guess is based on selecting pairs of relative
source positions from different rotation steps, where the initial guess now consists
of the center of rotation, the number of sources and the absolute source positions.
Note that the number of sources cannot readily be taken from each of the individual
rotation measurements, since not all sources might be visible or detected in every
rotation.

The set of all pairs of relative sources from two different rotations is given by
Sp =

{(

k1 ∈ SR1
, k2 ∈ SR2

)

: R1 6= R2

}

. Suppose that we are given a pair of relative

source positions
(

p̂′
s,k1

, p̂′
s,k2

)

from two different rotations, i.e.,
(

k1, k2
)

∈ Sp. If these
two relative source positions would belong to the same physical source, then we can
estimate the absolute source position and the center of rotation from this pair of
relative source positions. To do so, we notice that the relative source position p′

s,k1
is

related to the absolute source position ps,k and center of rotation T via the relation
p′
s,k1

= RφR1
ps,k + T. If we combine the information from the two relative source

positions in the pair we get:

[

p′
s,k1

p′
s,k2

]

= A

[

ps,k

T

]

with A =

[

RφR1
I

RφR2
I

]

(2.98)

By inverting this relation we can find an estimate of the absolute source position and
center of rotation from a pair of relative source positions observed in two different
rotations:

[

p̂s,k

T̂

]

= A−1

[

p̂′
s,k1

p̂′
s,k2

]

(2.99)

Furthermore we can calculate the uncertainty on the estimates ps,k and T from the

covariance matrix P̂xx. Therefore we have to extract the intersection of rows and
columns associated to either p′

s,k1
or p′

s,k1
, resulting in a 4 × 4 matrix Pk1,k2

. If we

decompose the inverted matrix as A−1 =

[

Ap

AT

]

. Then we can calculate an estimate
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of the uncertainty of the estimated center of rotation from the involved pair of relative
source points using the covariance matrix of T̂:

PT = ATPk1,k2
AT

T (2.100)

Once we have calculated for all possible pairs in Sp the estimated source position
and center of rotation, we can calculate the score of a certain hypothesized center of
rotation T. For each pair p we can calculate the squared Mahalanobilis distance:

d2p(T) =
(

T̂p −T
)T

P−1
Tp

(

T̂p −T
)

(2.101)

Now if the pair defined by p describes two relative source positions, both in different
rotations, and both from the same physical source point, then we expect that, if the
proposed center of rotation T is the true center of rotation, that the distance d2p will
be chi-squared distributed with two degrees of freedom, i.e., d2p ∼ χ2

2. By using the
cumulative distribution function of this distribution, Fχ2

2
(x), we can calculate a score

cp = 1 − Fχ2
2
(d2p) which gives us a number between 0 and 1. The higher this score,

the more likely is the estimated center of rotation, assuming the correspondence of
the pair and the true center of rotation are correct. We now propose to find an initial
estimate of the center of rotation T̂ using these scores and the calculated translation
estimates according to:

T̂ = T̂pmax
with pmax = argmax

p∈Sp

(

∑

p′∈Sp

cp′(T̂p)

)

(2.102)

Next we setup a graph consisting of vertices representing the relative sources p′
s,k.

An edge will be created between every pair p ∈ Sp of vertices which have a score of

cp(T̂) > 0.01. This means that pairs which are unlikely2 to satisfy the hypothesis will
not be connected. Clusters will then be identified by finding connected components
in the graph. A connected component is a set of vertices in the graph which are all
connected by paths, i.e., every vertex is connected with every other vertex via zero
or more vertices in the set. Only sources which are visible in more than one rotation
can be assumed to be part of the calibration phantom and will contribute information
about the center of rotation, therefore we will only accept clusters which contain at
least two vertices. Now the estimated number of sources in the calibration phantom
N̂s is given by the number of accepted clusters. For each source we can calculate
an initial estimate of that source position by averaging over the estimated source
positions in the cluster:

p̂s,k =
1

|Ck|
∑

k′∈Ck

RT
φR

k′

(

p̂′
s,k′ − T̂

)

(2.103)

2By setting the threshold at 0.01 there is only a 1 percent probability of disconnecting a pair
which does satisfy the hypothesis but has a lower score
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Algorithm Obtaining an initial estimate for T and P
1. For p ∈ Sp

2. Estimate T̂p using (2.99)
3. Calculate covariance matrix PTp

using (2.100)
4. End for
5. For p ∈ Sp

6. Calculate squared Mahalanobilis distances d2p′(T̂p) using (2.101)

for all p′ ∈ Sp

7. Calculate corresponding scores cp′(T̂p) = 1− Fχ2
2

(

d2p′(T̂p)
)

for all p′ ∈ Sp

8. End for

9. Find T̂ using (2.102)

10. Set N̂s = 0
11. For p ∈ Sp

12. If cp(T̂) > cth
12. If k1 or k2 is part of any of the existing clusters
13. Inlcude k1 and k2 in the found cluster
14. Else

15. Increment N̂s by one
16. Create new cluster CN̂s

= {k1, k2}
17. End if
17. End if
18. End for

19. For k ∈ {1, . . . , N̂s}
20. Estimate p̂s,k using (2.103)
21. End for

Figure 2.15 The algorithm to obtain an initial estimate of the center of rotation
T and the source positions P

The resulting algorithm is described in pseudo code in Figure 2.15. To illustrate
the steps in this algorithm, the calculated scores of each estimated center of rotation
for an example measurement are displayed in Figure 2.17. The final clustering result
of this example, based on creating graphs of connected components, is displayed in
Figure 2.17.

Optimizing the complete likelihood function

Now given the initial estimates ĉ, T̂, P̂ and the number of sources N̂s obtained in
the previous step, the final step comes down to actually minimizing the likelihood
function p(z|c,T,P) which gives us the calibration parameters. The measurement
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Figure 2.16 Example of score matrix and scores of the best estimated center of
rotation for the calibration measurement with relative positions as shown in Figure
2.14 containing four photoacoustic point sources.

Figure 2.17 Example of connected components formed by applying the clustering
operation from the algorithm in Figure 2.15 to the calibration measurement with
relative positions as shown in Figure 2.14 containing four photoacoustic point sources.
The numbering on the nodes refers to a hair number and a rotation number. The
existence of an edge between two vertices means the score cp of the corresponding
pair of vertices is higher than the predefined threshold.
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function that we use in setting up this likelihood function is given by:

hi(c,T,ps,k) =
1

c
‖pd,si −RφRi

ps,k −T‖ (2.104)

The residue function is then given by ri(c,T,ps,k) = hi(c,T,ps,k) − zi and the like-
lihood for an individual measurement zi by:

p(zi|c,T,P) =
1

(N̂s + 1)
√
2πσz





N̂s
∑

k=1

e
− 1

2

r2i (c,T,ps,k)

σ2
z +

√
2πσz

v



 (2.105)

Maximizing this likelihood requires a similar EM algorithm as implemented before
and results in iteratively finding the minimum of the weighted non-linear least squares
function Q:

Q(c,T,P, ĉ, T̂, P̂) =
N
∑

i=1

Ns
∑

k=1

r2i (c,T,ps,k)wi,k(ĉ, T̂, P̂) (2.106)

where the weights are now given by:

wi,k(ĉ, T̂, P̂) =
e
− 1

2

r2i (ĉ,T̂,p̂k)

σ2
z

N̂s
∑

k′=1

e
− 1

2

r2i (ĉ,T̂,p̂
k′ )

σ2
z +

√
2πσz

v

(2.107)

2.4 Conclusion

In this chapter, a robust algorithm for the calibration of our PER-PAT setup was
described. Input for the algorithm is either a reference measurement, in case of
which we are interested in estimating a position and speed of sound, or a calibration
measurement, when we want to estimate the center of rotation and speed of sound.
These measurements are in principle ultrasound signals, measured with the ultrasound
detector array, however as input to the algorithm we use time of flight (TOF) measures
obtained from a pre-processing step.

The model that relates the unknown calibration parameters to these TOF mea-
surements is discussed and analyzed in section 2.2. Some interesting properties of the
measurement models were learned from this analysis. We found that for the reference
measurement, with certain positions of the point source, it is not possible to obtain an
unambiguous solution to the calibration problem. This means care needs to be taken
when positioning the passive element in the PER-PAT setup. Furthermore we found
that the use of a calibration phantom with a slightly different speed of sound than
the ultrasound medium, results in biased estimates of the calibration parameters. An
effective and relatively simple change in the model was proposed which takes into
account the speed of sound difference and the size of the calibration phantom. This
new model reduced the biases in the estimated parameters almost completely.
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Finally, in section 2.3 a fully automatic calibration algorithm is outlined. The al-
gorithms aims to maximize the likelihood function of the calibration parameters from
the observed TOF measurements. Optimizing this likelihood function is not straight-
forward, the function contains a lot of local maxima, and the key to overcoming this
problem is to find a suitable initial guess close to the global maximum. We proposed
to divide the problem into smaller subproblems with increasing complexity. Each sub-
problem is made robust by explicitly adding the notion of outliers and handling them
in a natural way by a soft classification of the input measurements. The proposed
calibration algorithm was succesfully tested on all our experimentally obtained refer-
ence and calibration measurements. Some of these measurements had a substantial
amount of noise with a high percentage of outliers, making this a challenging task.
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3
Estimation of ultrasound parameters1

Abstract

The estimation of integrated ultrasound propagation parameters is important in ul-
trasound computed tomography and of late also in photoacoustic imaging. We derive
and evaluate several maximum likelihood estimators for the measurements of inte-
grated acoustic attenuation and for time of flight. From these estimates, speed of
sound and acoustic attenuation images can be reconstructed in a subsequent step.
The more accurate this estimate of the propagation parameters is, the better the
quality of the reconstructed image can be. We compare our proposed estimators with
two existing estimators for acoustic attenuation and show that it is possible to ob-
tain better results by using the maximum likelihood principle and by including phase
information in the estimator as well through the Kramers-Kronig causality relations.

1This chapter is under communication as:
i) G.H. Willemink and S. Manohar et al, “Estimation of integrated ultrasound transmission param-
eters I: Speed of Sound”, Physics in Medicine and Biology
ii) G.H. Willemink and S. Manohar et al, “Estimation of integrated ultrasound transmission param-
eters II: Acoustic attenuation”, Physics in Medicine and Biology

57
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3.1 Introduction

The estimation of acoustic propagation parameters like attenuation and speed of
sound are important factors in the fields of ultrasound tissue characterization and
non-destructive material testing. An application in medical ultrasound is the re-
construction of distributions of the propagation parameters inside an object from
projections [36]. In our PER-PAT imaging setup, we have to estimate time delay
and integrated attenuation along paths connecting a passive element with a detector
element. These estimates then can be used as input in the next step which is to
reconstruct images of speed of sound and acoustic attenuation. The more accurate
these projections can be estimated, the more accurate the reconstructed images will
be. The accuracy of the estimates depends on the propagation parameters of the
object, the signal to noise ratio of the measured signal, as well as on the performance
of the estimator that is being used. In this chapter we will focus on the analysis
and formulation of an estimator for time of flight and the formulation of accurate
estimators of the attenuation parameters. The accuracy will be presented in terms
of the bias and variance of the estimators and the resulting root mean square error
(RMSE).

The ultrasound propagation estimators proposed in this chapter can be used in
ultrasound transmission mode measurements. Measuring in transmission mode means
that an input signal is generated at one side of the object and a distorted version of
this signal is measured at the opposite side of the object. The distortion of the
input signal is caused by the ultrasound propagation parameters of the object. The
measured signal is thus a function of the input signal and the unknown ultrasound
propagation parameters. The estimation task is now defined as finding an estimate
of the unknown ultrasound propagation parameters from the measured signal. This
requires the formulation of a measurement model that describes the relation between
the parameters and the measured signal.

3.2 The ultrasound propagation parameters

The propagation of an ultrasound signal through an ultrasound medium can be char-
acterized by two effects. First, there is a change in amplitude of the signal and sec-
ondly there is a time delay which corresponds to the time the signal travels through
the medium. Both, the amplitude and time delay effects, are material properties
which can be position and frequency dependent. When looking at the propagated
and input signals in the frequency domain, i.e., after a Fourier transform, through a
homogeneous object their relation is defined as:

Y (ω) = exp

[(

−α(ω)− j
ω

c(ω)

)

d

]

X(ω) (3.1)

here ω = 2πf is the angular frequency, α(ω) and c(ω) are the frequency dependent
attenuation and speed of sound functions respectively, Y (ω) is the Fourier transformed
propagated signal and X(ω) is the Fourier transformed input signal. The distance d



3.2. The ultrasound propagation parameters 59

Ultrasound
point source

Ultrasound
detector array

Medium

Projection path

(a) UTT reference measurement
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Medium

Projection path

(b) UTT object measurement

Figure 3.1 Illustration of the ultrasound transmission mode tomography (UTT)
setup. Shown here are a reference measurement without any object to obtain a
reference measurement and an object measurement with the object in place. By
comparing the object measurement to the reference measurement an estimate of the
integrated attenuation and time delay along the projection path can be made.

represents the distance traveled through the medium. What we are looking for is a
parametrization of the attenuation and speed of sound functions and then to obtain
estimates of these parameters from propagated signals.

For a wide variety of materials, the attenuation function obeys a power frequency
law[37, 38]:

α(ω) = α0|ω|y (3.2)

The two material dependent parameters in this function are the attenuation constant
α0 and the power factor y. The power factor ranges between 1 and 2 for most
materials[39]. The attenuation constant α0 is one of the parameters that we finally
want to estimate. The speed of sound function is directly related to the attenuation
function via the Kramers-Kronig relations [40, 41]:

1

c(ω)
=

1

c(ω0)
+ α0 tan

(π

2
y
)

(

|ω|y−1 − |ω0|y−1
)

(3.3)

where c(ω0) is the speed of sound at a chosen reference frequency ω0. We see here
that dispersion vanishes when the parameter y = 0 or y = 2. The expression for the
case of y = 1 seems to become indeterminate, however, applying the rule of l’Hopital
gives it a well defined limit for y → 1 [42]:

1

c(ω)
=

1

c(ω0)
− α0

2

π

(

ln |ω| − ln |ω0|
)

(3.4)

The speed of sound at the reference frequency, c(ω0), is the other parameter that we
want to estimate. An overview of the parameters in the model is given in Table 3.1
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Parameter Units Description

α0 Np/(rad/s)y Power law attenuation constant
y Power law factor

c(ω0) m/s Speed of sound at a chosen reference frequency

Table 3.1 Overview of the parameters used when describing propagation of ultra-
sound signals through media having an attenuation function which can be described
with a frequency power law.

This parametrization of the propagation parameters in α0, y and c(ω0) is ap-
plicable when both the sending and receiving transducer are placed in the medium
of interest and the input signal X(ω) can be observed directly. In practical situa-
tions, however, this is not possible and we embed the object of interest in a coupling
medium. We can then obtain a reference signal of the input signal by removing the
object of interest from the setup as shown in Figure 3.1a. An object signal is obtained
by placing the object of interest in between the sending and receiving transducer as
shown in Figure 3.1b. This will introduce reflections at the transitions from object
to coupling medium and vice versa and also the attenuation and speed of sound of
the coupling medium should be taken into account. In terms of transfer functions, we
can write the dependency of both the object signal and reference signal on the input
signal as:

Yo(ω) = Hw(ω)Ho(ω)Hrefl(ω)Hrec(ω)X(ω) (3.5)

Yw(ω) = Hw(ω)Hw′(ω)Hrec(ω)X(ω) (3.6)

where the following transfer functions are defined:
Hw(ω) Transfer function of the coupling medium (water)
Ho(ω) Transfer function of the object
Hw′(ω) Transfer function of the water that replaces the removed object
Hrefl(ω) Transfer function representing reflection
Hrec(ω) Transfer function of the receiving transducer

By combining these two expressions, we can express the measured object signal as a
function of the measured reference signal:

Yo(ω) = Ho(ω)Hrefl(ω)H
−1
w′ (ω)Yw(ω) (3.7)

where the individual transfer functions are given by:

ln
(

Ho(ω)
)

= −α0|ω|yd− jω

(

1

c(ω0)
+ α0 tan

(π

2
y
)

(

|ω|y−1 − |ω0|y−1
)

)

d (3.8)

ln
(

Hrefl(ω)
)

= −αr (3.9)

ln
(

H−1
w′ (ω)

)

= αw|ω|2d+ jω
d

cw
(3.10)

Here we have assumed that the coupling medium is water, i.e. having an attenuation
function with a power of 2 and no speed of sound dispersion. Furthermore, because
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the attenuation in water is very small, αw = 2.53 · 10−4 Np/cm/MHz2[43], compared
to the attenuation expected in the objects to measure, we can ignore the attenuation
part of the water transfer function. All parameters can be combined in one single
transfer function

Yo(ω) = H(ω)Yw(ω) (3.11)

where

H(ω) = exp

[

−α0|ω|yd− αr − jω

(

1

c(ω0)
− 1

cw
+ α0 tan

(π

2
y
)

(

|ω|y−1 − |ω0|y−1
)

)

d

]

The unknown parameters here are the attenuation constant α0, the reflection coef-
ficient αr and the speed of sound c(ω0). If also the distance d is not known, the
integrated attenuation, α0d, and time delay d

c(ω0)−cw
can be chosen as unknown pa-

rameters. This is the case in ultrasound transmission tomography measurements,
where we want to extract the integrated attenuation and time delay, in order to re-
construct attenuation and speed of sound maps. We assume that the power factor y
is known beforehand.

3.2.1 Obtaining the water and object signals

Both the water and object measurements will be available as sampled data in the time
domain. A realistic model for noise on the measurements is additive Gaussian white
noise. The water measurement has a higher signal to noise ratio due to the absence
of an attenuating object than a typical object measurement. In an application like
ultrasound transmission mode tomography, where we want to obtain measures of
integrated attenuation/time of flight over different paths through the sample, the
water measurement can be reused for every individual object measurement, so that
it is worth the effort to take multiple water measurements and decrease the noise by
averaging. This leads to the assumption from now on that the signal to noise ratio
on the the water measurement is high enough to ignore the influence of noise on the
water measurement.

Suppose now that we observe the time domain object measurement with additive
Gaussian white noise of variance σ2

zt
, sampled at a frequency of fs and with a length

of n samples. An FFT of this time domain object measurement would give us a
frequency domain representation where the following frequency components can be
calculated:

ωi =











2πfs
i− 1

n
i ≤ ⌈n+1

2 ⌉

2πfs
i− 1− n

n
i > ⌈n+1

2 ⌉
(3.12)

The index i ranges from 1 to n. If we use the complex FFT matrix W [44] to
represent the FFT operation, then the time domain measurements are related to the
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actual components of Yo(ω) according to:

zt = V







Yo(ω1)
...

Yo(ωn)






+ nzt (3.13)

Where the matrix V = W−1 = 1
n
W∗ represents the inverse FFT operation. The

vector nzt represents the additive zero mean white Gaussian noise with variance of
σ2
zt
. We will make use of this relation later to derive the attenuation estimators.

3.3 Estimating time of flight

We start with the estimation of time of flight alone. We do not yet include any
dispersion, i.e., frequency dependent behavior, in the estimation procedure. What
we are interested here is only the time of flight between a source and detector. In
the section on the estimation of attenuation, we will include frequency dependent
behavior, and the time of flight estimate will be refined by making use of the relation
between time delay dispersion and attenuation dispersion. This section will start by
investigating the photoacoustic source signal on which the TOF estimation has to be
performed. After that we continue with investigating what kind of accuracy we can
expect and present a method to extract TOF measurements from measured signals.

3.3.1 The photoacoustic source signal

The signals used in the calibration procedure are photoacoustically induced ultrasound
signals from small optical absorbers incorporated in a calibration phantom. Such a
small optical absorber will, as a result of the photoacoustic effect, generate a short
bi-polar ultrasound pulse. This bi-polar pulse is then measured with an ultrasound
transducer, which will be the input to the calibration procedure. Due to the limited
bandwidth of a typical ultrasound transducer we will in general not measure a bi-polar
pulse. When the size of the optical absorber is small with respect to the theoretical
resolution which depends on the bandwidth of the ultrasound transducer, the shape of
this pulse will only be dependent on the impulse response of the ultrasound transducer.
The measured signal is the convolution of the short bi-polar pulse with the impulse
response of the transducer.

Suppose that the bi-polar pulse has a short duration on the scale of the impulse
response. In that case the convolution operation can be seen as taking the time
derivative of the impulse response. Thus what we find is that measuring a short bi-
polar pulse with the ultrasound transducer results in measuring the time derivative
of the impulse response of the ultrasound transducer. If we assume that the transfer
function of the transducer is Gaussian with a certain bandwidth and center frequency,
then taking the time derivative will still result in a Gaussian transfer function. This
translates, in the time domain, to a sine wave of a certain frequency modulated with
a Gaussian envelope. Time and frequency domain representations of such a signal are
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displayed in Table 3.2 and an example realization is plotted in Fig. 3.2. The signal
is parametrized with an angular center frequency ωc and an angular bandwidth ωb.
The angular bandwidth is related to the bandwidth B defined as the frequency range
between the two −6 dB cut-off frequencies via:

ωb ≈ πB√
2 ln 2

(3.14)

We have also shown the representation of a typical bi-polar pulse, as the derivative of
an unmodulated Gaussian time domain signal, in Table 3.2 and an example realization
in Figure 3.3. An interesting observation here is that, in the limit, when the center
frequency is much smaller than the bandwidth, the Gaussian pulse source converges,
up to a scale factor, to the bi-polar pulse.

Time domain Frequency domain

Gaussian pulse − sin(ωct)e
− 1

2ω
2
bt

2 √

π
2

j
ωb

(

exp
[

−(ω−ωc)
2

2ω2
b

]

− exp
[

−(ω+ωc)
2

2ω2
b

])

Gaussian deriv. −ωbte
− 1

2ω
2
bt

2 jω
ωb

exp
[

−ω2

2ω2
b

]

Table 3.2 Time domain and frequency domain representations of two frequency
band limited and compactly supported in the time domain functions.
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Figure 3.2 A Gaussian pulse source signal with ωb

2π = 2 MHz and a center frequency
of 6 MHz. The time domain representation is shown in (a) and the magnitude of the
frequency domain representation in (b).

Normalizing the source signal

For a fair comparison of the influence of the bandwidth and center frequency on
the TOF estimation accuracy, we will scale the amplitude of the input signals. Our
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Figure 3.3 A bi-polar pulse, obtained as the derivative of a Gaussian, with ωb

2π =
20 MHz. The time domain representation is shown in (a) and the magnitude of the
frequency domain representation in (b).

scaling will normalize the total energy in the signal averaged over (a measure of) the
signal duration. The parameter ωb is inversely related to the time duration of the
corresponding pulse. For a signal f(t) with the bandwidth related parameter ωb, we
will normalize to the expression:

√

ωb

∫ ∞

−∞
f2(t)dt = 1 (3.15)

This ensures that the total energy of the signal scaled by the duration of the signal
will be constant for different realizations of the signals.

Applying this normalization will result in a normalizing scale factor of:

k =
1

√

ωb

∫∞
−∞ sin2(ωct)e−ω2

bt
2
dt

(3.16)

The integral term in the denominator can be calculated using Table B.3 from Ap-
pendix B:

∫ ∞

−∞
sin2(ωct)e

−ω2
bt

2

dt =

√
π

2ωb

[

1− e
−
(

ωc
ωb

)2
]

(3.17)

which gives the normalizing scale factor for the Gaussian modulated signal:

k =

√

2√
π

1

1− e
−
(

ωc
ωb

)2 (3.18)

Figure 3.4 shows the resulting amplitude of the source signal after the proposed nor-
malization as a function of the ωc

ωb
ratio.
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Figure 3.4 Amplitude of the Gaussian modulated pulse after normalization of the
total energy over the signal duration as a function of the ωc

ωb
ratio.

Sampling the source signal

In our problem, the continuous time domain signals are available as discrete sampled
measurements. We will now proceed with describing the sampled measurements in
detail. For a given sampling frequency of fs (Hz) and a window size of Tw (s), we can
take Ns samples inside the measurement window:

Ns = ⌈Twfs + 1⌉ (3.19)

If the measurement window is centered around the received signal, the distribution
of time steps relative to this center will be given by:

ti =
1

fs

(

i− Ns + 1

2

)

(3.20)

where i ∈ [1, . . . , Ns] represents the sample number. We can then obtain a vector
z = [z1, . . . , zNs

]T containing the sampled measurements. If we assume that the
measurement is corrupted with additive noise, the elements in the vector are defined
as:

zi = h(ti + τ) + nz,i (3.21)

Here τ is the unknown time delay (within the centered window) and nz,i is addi-
tive measurement noise. The measurement function h(t) here is the time domain
representation of the source signal (examples of source signals are given in Table 3.2).
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3.3.2 The Cramer-Rao Lower Bound

The question now is, how accurately can we estimate the time delay from a set
of discrete sampled measurements. To investigate this we look at how the available
information (measurement) is related to the unknown time delay, which will help us to
find an expression for the uncertainty of the time delay. This accuracy can depend on
several factors, such as the sampling frequency, the window size of the measurements,
the noise on the measurements and the kind of source signal that is being used. When
the measurements are uncorrelated and identically Gaussian distributed with variance
σ2
z , then the Cramer-Rao Lower Bound (CRLB) of the unknown time delay is given

by[31]:

CRLB =
σ2
z

Ns
∑

i=1

(

∂
∂t
h(t)

∣

∣

ti

)2
(3.22)

This expression gives us the minimum variance (for unbiased estimators) on the time
delay estimate that can be obtained from the described measurements. Which means
we have an expression to evaluate the uncertainty of the unknown time delay. From
this expression we see that increasing the window size (i.e. taking more samples) will
lower the CRLB. However, because we are using signals that have compact support
in the time domain, this will approach a limiting value. In the limit, increasing the
window size will not decrease the CRLB because the time derivative of the source
signal will be zero at both ends of the window.

We will now proceed with showing how this works out for the measured photoa-
coustic source signal. Applying the time derivative to the source signal and using the
CRLB formula (3.22) gives us the necessary expressions. The measurement function
is given in the top row of Table 3.2. We will also apply the normalizing scale factor k.
The variance of any unbiased estimator of the time delay from a normalized Gaussian
modulated signal will have a lower bound of:

Var[τ̂ ] ≥ σ2
z

Ns
∑

i=1

k2
(

ωc cos(ωcti)− ω2
b ti sin(ωcti)

)2

exp
[

−ω2
b t

2
i

]

(3.23)

CRLB for an infinitely wide window

As mentioned before, the CRLB approaches a limiting lower bound when the window
size becomes infinitely long. We will now investigate what this limiting lower bound
is for an infinitely long window size by applying the limit of Ns → ∞ to (3.23). To
calculate this limit we make use of the following relation:

∫ ∞

−∞
f(t)dt ≈ lim

Ns→∞

Ns
∑

i=1

f(ti)∆t =
1

fs
lim

Ns→∞

Ns
∑

i=1

f(ti) (3.24)

This approximation holds when the sampling frequency is high enough, so that the
time spacing between two samples ∆t = 1

fs
will be small on the scale of f(t). By
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using this relation we can evaluate the infinite sum as an integral equation for which
we can obtain a closed form solution.

For the Gaussian modulated signal we have to evaluate (3.23). The denominator
term in that equation can now be rewritten as:

lim
Ns→∞

Ns
∑

i=1

k2
(

ωc cos(ωcti)− ω2
b ti sin(ωcti)

)2

exp
[

−ω2
b t

2
i

]

(3.25)

≈ fs

∫ ∞

−∞
k2
(

ωc cos(ωct)− ω2
b t sin(ωct)

)2

exp
[

−ω2
b t

2
]

dt (3.26)

By expanding the square and using the results from Table B.3, we can calculate the
integral:

fs

∫ ∞

−∞
k2
(

ωc cos(ωct)− ω2
b t sin(ωct)

)2

exp
[

−ω2
b t

2
]

dt (3.27)
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√
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−
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ω2
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ωb
+
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2
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 (3.29)

Applying this result to (3.23) gives us the CRLB for normalized Gaussian modulated
signals measured with an infinitely long window size:

Var[τ̂ ] ≥ σ2
z

fsωb

[

(

ωc
ωb

)2

1−e
−

(

ωc
ωb

)2 + 1
2

] (3.30)

It is interesting to look at the behavior of the term in the denominator. This term
converges to different expressions for ωc

ωb
≪ 1 and ωc

ωb
≫ 1 as can be seen in Figure

3.5. When ωc

ωb
< 1

2 we get the low center frequency CRLB:

Var[τ̂ ] ≥ σ2
z

fsωb
3
2

(3.31)

and when ωc

ωb
> 2 we get the high center frequency CRLB:

Var[τ̂ ] ≥ σ2
z

fsωb

[

(

ωc

ωb

)2

+ 1
2

] (3.32)

Effect of window size

The signals that we encounter in practice have limited support in the time domain,
therefore it is convenient to use a limited window over which the two delayed signals
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Figure 3.5 Illustration of limit approximations of the denominator term in (3.30).
The functions displayed are the low ωc

ωb
ratio approximation f1(

ωc
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), the high ωc

ωb
ratio

approximation f2(
ωc

ωb
) and the original term f3(

ωc

ωb
). The functions are given by:
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(
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=
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−

(
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ωb

)2 + 1
2

have to be compared. The wider this window, the more information that can be used
and thus the higher the accuracy of the time delay estimate. However, a wide window
is undesirable in practice, since we the probability of measuring echoes and other
unwanted signals will increase. We have already seen that the time delay estimate
accuracy will converge to a limiting value for infinitely long windows and we will now
investigate from what window size on this convergence occurs. To investigate this,
we have calculated the CRLB for a whole range of window sizes and for different
settings of the ωc and ωb parameters. In Figure 3.6 the results of these calculations
are displayed. We see there that a window size of Tw = 6

ωb
is sufficient to get as close

to 0.1% to the CRLB of the infinite window size for any setting of ωc and ωb that we
expect to encounter in practice.

Scaling of the source signal

Until now we have assumed that the measured signal and the assumed source signal
have the same amplitude. These amplitudes are displayed in Figure 3.4 and are a
result of the normalization convention we use as described earlier this section. The
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Figure 3.6 This image shows the relative increase in the CRLB that results from
using a finite window size with respect to the CRLB that would have been obtained
in case of an infinitely long window size. The x-axis indicates the different settings of
the ωc and ωb parameters. On the y-axis the window size is shown. This window size
is relative to the length 2

ωc
. The iso-contour lines show the locations of the boundaries

for certain CRLB increase ratios. For example, to get an increase in the CRLB of
less than 0.1% for all possible settings of ωc and ωb a window size of at least 3× 2

ωb

should be used.

use of a different amplitude in the measured signal can easily be incorporated in the
CRLB expression. Suppose the measured signal is scaled with a factor A with respect
to the amplitude as shown in Figure 3.4. The measurements are then related to the
source signal via:

zi = A · h(ti + τ) + nz,i (3.33)

The constant A propagates in the CRLB (3.30) by a multiplication with
(

1
A

)2
, so

that the CRLB for the TOF in this case becomes:

Var[τ̂ ] ≥

(σz

A

)2

fsωb

[

(

ωc
ωb

)2

1−e
−

(

ωc
ωb

)2 + 1
2

] (3.34)

It might however occur, that only the shape and not the scaling of the source signal
is known in advance when the signal is measured. In that case, the measurement
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model has to be extended with the unknown A parameter and the CRLB will be in
the form of a covariance matrix. The question is whether the element in the CRLB
matrix of the variance of the TOF would still be the same as in the case of an a-priori
known A-parameter. To investigate this, we notice that for the multivariate case with
uncorrelated identically distributed additive Gaussian noise, the CRLB is given by:

CRLB = σ2
z

(

HTH
)−1

(3.35)

Where H is the Jacobian matrix of the measurement function, which in our case is
given by:

H =







A ∂
∂t
h(t1 + τ) h(t1 + τ)
...

...
A ∂

∂t
h(tNs

+ τ) h(tNs
+ τ)






(3.36)

so that the expression of the CRLB can be written as:

CRLB = σ2
z













A2
Ns
∑

i=1

(

∂

∂t
h(ti + τ)

)2

A

Ns
∑

i=1

∂

∂t
h(ti + τ) · h(ti + τ)

A

Ns
∑

i=1

∂

∂t
h(ti + τ) · h(ti + τ)

Ns
∑

i=1

h2(ti + τ)













−1

(3.37)

When the cross terms in the matrix in this expression are zero, so that matrix becomes
diagonal, the matrix inverse can immediately be calculated. Only in that case, the
CRLB of the TOF, which is the upper left element in (3.37), is equal to the earlier
found expression (3.22). To see when this is the case, we recall that, using a modified
version of (3.24), we can approximate the cross terms with a continuous integral as:

Ns
∑

i=1

∂

∂t
h(ti + τ) · h(ti + τ) ≈ fs

1
2Tw
∫

− 1
2Tw

∂

∂t
h(t+ τ) · h(t+ τ)dt (3.38)

where Tw is the window size which related to Ns via (3.19). By using partial integra-
tion, we can rewrite this expression as:

fs

1
2Tw
∫

− 1
2Tw

∂

∂t
h(t+ τ) · h(t+ τ)dt =

1

2
fsh

2(t+ τ)

∣

∣

∣

∣

1
2Tw

t=− 1
2Tw

(3.39)

The question now is, will this expression evaluate to zero. If the window size Ts is
chosen wide enough, so that evaluating the source function h(t) at both ends of the
window evaluates to zero, the above expression also evaluates to zero. We can say
that in that case the source function and its time derivative are orthogonal. This
means that when the window is chosen wide enough, the cross terms in (3.37) become
zero and the CRLB of the TOF will not be different when the scaling of the source
signal A is not known a-priori.
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Summary

We will now summarize the effects that the different parameters have on the accuracy
of our TOF estimate:

Additive noise variance (σ2
z) An increase of the additive noise with a certain fac-

tor is directly related to an increase with the same factor in the CRLB of the
time delay estimate.

Scaling of the source signal (A) Doubling the amplitude scaling of the source sig-
nal will result in half of the standard deviation of the time delay estimate. When
the scaling of the source signal is not known a-priori and when the window size
is chosen wide enough, the CRLB expression is not affected by this extra un-
certainty.

Sampling frequency (fs) Doubling the sampling frequency will lead to a decrease
of the CRLB by a factor two. In terms of the standard deviation of the time
delay estimate this results in a decrease of a factor

√
2.

Source signal (ωc and ωb) The ratio ωc

ωb
determines the number of oscillations in

the source signal. Increasing this ratio increases the number oscillations and
decreases the CRLB as can be seen by the trend of f3(

ωc

ωb
) in Figure 3.5. The

parameter ωb itself determines the duration of signal in the time domain. In-
creasing this parameter decreases the signal duration and decreases the CRLB.

Window size (Ns) A large enough window size (and thus large enough number of
samples) should be used to ensure that the CRLB approaches the limiting value
of an infinitely long window close enough. From Figure 3.6 we see that a typical
window size of at least 6

ωb
should be used, which means a minimum number of

samples Ns = ⌈6 fs
ωb

+ 1⌉ according to (3.19).

3.3.3 Implementation of a time of flight estimator

Now that we have fully described the source signals, how these are related to the
unknown TOF parameter and what kind of accuracy we can expect, it is time to
introduce a practical implementation of a TOF estimator.

In general, when there is a time shift τ and a scaling A, a source signal h(t) and
a shifted signal f(t) are related as:

f(t) = A · h(t+ τ) (3.40)

A relation which also can be represented as:

f(t) = F−1
{

AejωτF {h(t)}
}

= F−1
{

AejωτH(ω)
}

(3.41)

Based on these two relations, we will propose an estimator for the time delay τ
from discrete sampled time domain signals. The discrete time domain signals will be
sampled with a sampling frequency fs over a certain time window with time steps
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given by (3.20). This means that for time delays which are an integer multiple of
∆t = 1

fs
we can simply use a matched filter to estimate the time delay. In general,

the time delay will not exactly be an integer multiple of ∆t and applying the matched
filter technique will result in an estimate whose accuracy is already limited by ∆t.
However, as we have seen in the previous section, the theoretically obtainable accuracy
is not limited by the sampling frequency. The matched filter can give us an initial
guess of the TOF τ , which is already quite close to the actual value and can be used
as initialization in a subsequent estimator.

To proceed with the introduction of the TOF estimator, we start by writing how
the sampled measurements z are related to the source signal h(t) via a measurement
function hz(τ):

z = hz(x) + nz = A







h(t1 + τ)
...

h(tNs
+ τ)






+ nz (3.42)

where the parameter vector x = [τ, A]T is used. When the additive noise nz can be
seen as Gaussian white noise with variance σ2

z , a maximum likelihood estimate of the
parameter vector x can be calculated by solving:

x̂ML = argmin
x

‖z− hz(x)‖2 (3.43)

Because the measurement function is a non-linear function of x and because we al-
ready have an initial estimate x(1) = [τ̂ (1), Â(1)]T close to the final solution, from
our matched filter, we can find the final solution via the Gauss-Newton optimization
method[35]. This method is based on iteratively linearizing the measurement function
around our current estimated parameter value resulting in a quadratic cost function.
The minimum of the cost function is then used as the next estimate and the iteration
is repeated:

x̂(i+1) = argmin
x

∥

∥

∥z−
(

hz(x̂
(i)) +H(i)

z

(

x− x̂(i)
))∥

∥

∥

2

(3.44)

= x̂(i) +
(

H(i)T
z H(i)

z

)−1

H(i)T
z

(

z− hz(x̂
(i))
)

(3.45)

Here H(i)
z =

[

Â(i)b
(i)
1 b

(i)
2

]

is the Jacobian matrix with the two vectors defined as:

b
(i)
1 =







∂
∂t
h(t1 + τ̂ (i))

...
∂
∂t
h(tNs

+ τ̂ (i))






b
(i)
2 =







h(t1 + τ̂ (i))
...

h(tNs
+ τ̂ (i))






(3.46)

Furthermore we know, from (3.38), that when the window size is long enough, the
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two vectors b
(i)
1 and b

(i)
2 will be orthogonal. Applying this to (3.44) results in:

τ̂ (i+1) = τ̂ (i) +
1

Â(i)

b
(i)T
1 z

∥

∥

∥
b
(i)
1

∥

∥

∥

2 (3.47)

Â(i+1) =
b
(i)T
2 z

∥

∥

∥b
(i)
2

∥

∥

∥

2 (3.48)

If we look at these two equations, we see that we can find an expression for the TOF
τ̂ (i+1), without explicitly calculating the estimate of the amplitude scaling:

τ̂ (i+1) = τ̂ (i) +

∥

∥

∥
b
(i)
2

∥

∥

∥

2

b
(i)T
2 z

b
(i)T
1 z

∥

∥

∥
b
(i)
1

∥

∥

∥

2 (3.49)

In order to use this estimator, we have to specify how we are able to evaluate the
function hz(τ) and its derivative ∂

∂τ
hz(τ) at arbitrary values of τ . To do this we use

relation (3.41). In the discrete sampled case we can write this as:











h(t1 + τ)
h(t2 + τ)

...
h(tNs

+ τ)











= IDFT





























ejω1τH(ω1)
ejω2τH(ω2)
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ejωNsτH(ωNs

)





























(3.50)

where the elements H(ωi) represent the discrete fourier transform (DFT) of the sam-
pled time domain original source signal h(ti). The components ωi represent the
angular frequency that results from the DFT:

ωi =











2πfs
i− 1

Ns
i ≤ ⌈Ns+1

2 ⌉

2πfs
i− 1− n

Ns
i > ⌈Ns+1

2 ⌉
(3.51)

The time derivative of the measurements function is then given by:
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(3.52)

By using this measurements function and derivative of the measurements function,
together with the iterative relation (3.49) the time delay estimator is fully described.
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Monte-Carlo simulation of TOF Estimator

We know what the CRLB of the TOF estimate, given these source signals is. It is
interesting to see how close the TOF estimator can get to this lower bound. To in-
vestigate this, we performed a Monte-Carlo simulation. As source signal we used a
Gaussian pulse with a center frequency (ωc

2π ) of 6 MHz and a bandwidth (B) of 4.7
MHz, which corresponds to ωc

2π = 2 MHz. These values correspond to the frequency
content of a typical photoacoustic point source, measured with our ultrasound trans-
ducer. A realization of this source signal is displayed in Figure 3.2. Furthermore the
sampling frequency (fs) was set to 80 MHz which corresponds to the setting of our
A/D converter. For each run in the Monte-Carlo simulation a random time delay
was applied to the source signal and additive noise was added. The additive noise
variance was ranged from σz = 10−3 to σz = 1 over 100 steps on a logarithmic scale.
For each step a simulation with 100.000 runs was performed.

As mentioned before, an initial time delay estimate was obtained by applying a
Matched Filter on the measurements. This initial estimate was subsequently used as
initialization for the Gauss-Newton based estimator. The accuracy of the Matched
Filter is in principle limited by the sampling frequency. The time delay will then be
uniformly distributed around the true time delay over the range [− 1

2fs
, 1
2fs

]. However,
the accuracy can never be better than the CRLB, so what we expect is that the lower
bound of the Matched Filter is given by the sum of CRLB and the limited sampling
frequency effect:

Var[τ̂ ] =

(

1
fs

)2

12
+ CRLB (3.53)

The results of the Monte-Carlo simulation are displayed in Figure 3.7. Figure 3.7a
shows the performance of the Matched Filter and Gauss-Newton based method to-
gether with the CRLB and the predicted Matched Filter Bound. We see that up
to additive noise of σz = 0.4 the Gauss-Newton method is very close to the CRLB.
The Matched Filter has a constant standard deviation on the estimate for this range
as predicted and is outperformed by the Gauss-Newton based estimator. When the
additive noise reaches a value σz > 0.4 we see that the Gauss-Newton based estimator
starts to deviate from the CRLB and the Matched Filter starts to deviate from its
predicted lower limit. This behavior can be explained by looking at the probability
density functions that can be estimated from the results of the Monte-Carlo simula-
tion. For low additive noise values, the pdf of the time delay estimate obtained with
the Gauss-Newton based estimator is Gaussian distributed with its variance equal to
the CRLB. This is illustrated in Figure 3.8a, for σz = 0.01, where a Gaussian distribu-
tion is plotted together with the pdf that can be reconstructed from the Monte-Carlo
simulation. Also the pdf of the Matched Filter estimator is plotted and we see that it
this pdf can be seen as the convolution of the Gaussian pdf based on the CRLB with
the uniform pdf based on the limited sampling frequency. For higher additive noise
values, both estimators do not follow their predicted lower bound and outliers are
starting to occur, which is illustrated in Figure 3.8b. The percentage of outliers as a
function of σz is displayed in Figure 3.7b. The average number of iterations required
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Figure 3.7 Monte-Carlo simulation results of the Gauss-Newton and Matched Filter
time delay estimators. The source signal used has a setting of ωc

2π = 6MHz and
ωb

2π = 2MHz. The sampling frequeny was fs = 80MHz. A realization of the signal
is displayed in Figure 3.2. The simulation was carried out over a range of different
additive noise variance (σ2

z) values.
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Figure 3.8 Probability density functions of the estimated time delay τ̂ , obtained
from Monte-Carlo simulations with two different values of additive noise σz.

for convergence was also investigated and is displayed in Figure 3.7c. The convergence
was tested by comparing the difference between the last two iterations. When the
difference becomes smaller than a pre-defined threshold convergence is reached. In
the figure we see that when the amount of additive noise is increased, the number of
iterations that is required for convergence also increases.

3.3.4 Conclusion

We have analyzed the problem of estimating the unknown TOF from the measure-
ment of a photoacoustic source signal with an ultrasound transducer. The measured
photoacoustic signal was represented as a sampled sine wave of a certain frequency
modulated with a Gaussian envelope of a certain bandwidth. An estimator was de-
rived which, for high SNR, equals the CRLB. Furthermore, an expression for the
CRLB has been obtained, so that the CRLB can be predicted based parameters like
the sampling frequency, the noise level, the transfer function center frequency and
transfer function bandwidth.

3.4 Estimating acoustic attenuation

We now continue by including the frequency dependent part of the ultrasound prop-
agation parameters. First two existing attenuation estimators will be introduced.
These existing estimators, however, do not use the phase information, which can be
used to estimate time delay dispersion and improve the accuracy of the attenuation
estimate. After this introduction we will continue with our proposed attenuation
estimators, where we also use the phase information.
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3.4.1 Existing estimators

Spectral shift estimator

The spectral shift estimator [45, 46] is based on the fact that the magnitude of the
spectrum of the input signal has a Gaussian distribution. The assumption is made
that after propagation of a Gaussian modulated signal through a medium with a
linear with frequency increasing attenuation function, i.e., y = 1, an output signal
will result which still has a Gaussian distribution in the frequency domain. The
signal will have the same bandwidth but a lower center frequency. The amount of
down shift in center frequency is a measure for the attenuation constant α0. Suppose
the magnitude spectrum of the reference signal is given as:

|Yw(ω)| = Kw exp

[

−1

2

(ω − ωc)
2

σ2

]

(3.54)

where ωc is the angular center frequency of the Gaussian, σ is its bandwidth in the
angular frequency domain and Kw is the magnitude of the Gaussian. If we measure
an object signal with a linear attenuation function α(ω) = α0|ω|, we get for the
magnitude of the object measurement spectrum:

|Yo(ω)| = Ko exp

[

−1

2

(ω − (ωc − α0dσ
2))2

σ2

]

(3.55)

with
Ko = Kw exp

[

−αr − ωcα0d+
1
2α

2
0d

2σ2
]

(3.56)

The center frequency of the object signal after propagation through an object with a
linear attenuation function is thus given by:

ωc′ = ωc − α0dσ
2 (3.57)

From this we can observe that the resulting shift in center frequency is related to the
attenuation constant α0 according to:

α0 =
1

d

ωc − ωc′

σ2
(3.58)

and to the reflection constant αr:

αr = ln

(

Kw

Ko

)

− ω2
c − ω2

c′

2σ2
(3.59)

where ωc′ is the center frequency in the measured output spectrum. The question
that now remains is, how do we estimate the center frequency of the measured signal.

There are several possibilities here:

Frequency of maximum For example one could take the frequency at which the
magnitude spectrum attains a maximum.

ωc′ = argmax
ω

|Yo(ω)| (3.60)
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First moment Another possibility is to calculate the center frequency by looking at
the spectrum as a (Gaussian) probability density function (pdf) and calculating
its first moment, which corresponds to the mean of the pdf:

ωc′ =
∑

i

ωi

|Yo(ωi)|
∑

j |Yo(ωj)|
(3.61)

Correlation with Gaussian template A third possibility is to estimate the center
frequency by making use of the information that the spectrum is Gaussian
shaped with known variance but unknown mean. The mean (center frequency)
can then be estimated by cross correlation of the spectrum with a Gaussian
template and finding out the frequency that maximizes the cross correlation:

ωc′ = argmax
ω

(

∑

i

exp

[−(ωi − ω)2

σ2

]

|Yo(ωi)|
)

(3.62)

Finally, when the new center frequency ωc′ is estimated, the attenuation constant α0

and reflection constant αr can be calculated.

Log spectral difference method

Another commonly used estimator is based on fitting a parametrized curve through
the difference in logarithm of the magnitude of the sample spectrum with the water
spectrum[46, 47]. If we look at the log spectral difference expression:

ln |Yo(ω)| − ln |Yw(ω)| = −α0|ω|yd− αr (3.63)

We see that this linearly relates the attenuation constant α0 and the reflection con-
stant αr to the log spectral differences. In the log spectral difference method, we try
to fit this linear function to the data in a least squares sense. We will stack the data
in a vector:

z =







ln |Yo(ω1)| − ln |Yw(ω1)|
...

ln |Yo(ωn)| − ln |Yw(ωn)|






(3.64)

and relate the unknown parameters to the data via the matrix:

H =







−|ω1|yd −1
...

...
−|ωn|yd −1






(3.65)

The unknown parameters are contained in the vector:

x =

[

α0

αr

]

(3.66)
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The solution to the problem is obtained by minimizing the least squares function:

x = argmin
x

||z−Hx||2 (3.67)

Which is equivalent (after setting the gradient to zero) to solving the linear system:

HTHx = HT z (3.68)

Due to noise on the data, we have to limit the frequency components of the spectrum
that will be used in the estimation. Typically, we select frequency components which
are above the noise level.

When the distance d is not known, the H matrix will be modified to not include
d and the estimated parameters will then be the integrated attenuation α0d and αr.

3.4.2 Proposed estimators

Based on the measurement relation defined in (3.13), we will now continue with the
derivation of several estimators of the ultrasound propagation parameters. We will
use the following parameterization of the propagation parameters:

x =





α0

αr

τ0



 (3.69)

being the attenuation constant, the reflection coefficient and the time delay per unit
distance difference between the object and water respectively. The time delay per
unit distance is related to the speed of sound in the object and the speed of sound in
the water via:

τ0 =
1

c(ω0)
− 1

cw
(3.70)

We now define an attenuation and phase function, which are linearly dependent on the
unknown parameters, and are contained in the time domain measurement function
(3.13). The attenuation function will we define as, see (3.11):

hatt,i(x) = −x1|ωi|yd− x2 (3.71)

and the phase function as, see (3.11):

hphase,i(x) = −ωi

(

x3 + x1 tan
(π

2
y
)

(

|ωi|y−1 − |ω0|y−1
)

)

d (3.72)

When the distance d is not known, the measurement model can be changed so that
d = 1. The resulting unknown parameters will be the integrated attenuation α0d, the
reflection αr and the time delay τ0d.

Using these functions we can write the frequency domain relation between the
water and object signals as:

Yo(ω) = Yw(ω) exp [hatt(x) + jhphase(x)] (3.73)
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We will use this relation on a limited frequency range and assume that the magnitude
of the water signal Yw(ω) is zero for all frequencies above our Nyquist frequency
1
2ωs. Due to the limited transducer bandwidth this assumption will be realized. If
furthermore, we assume that there is no DC component on the signal, we can use
the frequencies between DC and half the sampling frequency 1

2ωs to construct a time
domain measurement function. The time domain measurement function is given by:

ht(x) = V







Yw(ω1) exp
[

hatt,1(x) + jhphase,1(x)
]

...
Yw(ωn) exp

[

hatt,n(x) + jhphase,n(x)
]






(3.74)

Due to conjugate symmetry in the DFT operation and the fact that Yw(ω) is zero for
the DC and half the sampling frequency, we write the equivalent relation:

ht(x) = Re











2Ṽ







Yw(ω2) exp
[

hatt,2(x) + jhphase,2(x)
]

...
Yw(ωm) exp

[

hatt,m(x) + jhphase,m(x)
]

















(3.75)

where
Ṽ = V(:,2:m) (3.76)

and where m is chosen so that it does not include the Nyquist frequency 1
2ωs:

m =
⌈n

2

⌉

(3.77)

As mentioned before, these time domain measurements are corrupted with additive
white Gaussian noise nzt with a variance of σ2

zt
:

zt = ht(x) + nzt (3.78)

The time domain measurement vector zt can now directly be used to formulate an es-
timator of the ultrasound propagation parameters or we can use several transforms to
obtain different measurement vectors and construct different ultrasound propagation
parameter estimators. In the following subsections we will investigate the different
possibilities and formulate a maximum likelihood estimator for each of them. An
overview of the possible transformations on zt is displayed in Figure 3.9.

Time domain measurements

We start by exploring the possibility of formulating an estimator, directly based on
the time domain measurements zt. For these measurements, the noise is additive
white Gaussian with equal variance σ2

zt
on all samples in zt. The model that predicts

the measurements from the parameters, ht(x), is given in (3.75). The maximum
likelihood estimate is in this case simply obtained by minimizing the function:

x̂ML = argmin
x

||zt − ht(x)||2 (3.79)
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Figure 3.9 Overview of the possible transformations to different measurement do-
mains.

Since the time domain measurement function ht(x) is nonlinear, we recognize here
the nonlinear least squares problem [35]. We will solve this problem via the Gauss-
Newton method, which means a linear approximation of ht(x) is made at a point

x̂(k):

ht(x) ≈ ht(x̂
(k)) +H

(k)
t (x− x̂(k)) (3.80)

where H
(k)
t is the Jacobian matrix which can be calculated as:

H
(k)
t = Re











2Ṽ







Yw(ω2) exp
[

hmag,2(x̂
(k)) + jhphase,2(x̂

(k))
]

(∇hmag,2 + j∇hphase,2)
T

...

Yw(ωm) exp
[

hmag,m(x̂(k)) + jhphase,m(x̂(k))
]

(∇hmag,m + j∇hphase,m)T

















where gradients of hmag,i(x) and hphase,i(x) are simply given by:

∇hmag,i =





|ωi|yd
−1
0



 (3.81)

∇hphase,i =





−ωid
0

−ωid tan
(

π
2 y
)

(|ωi|y−1 − |ω0|y−1)



 (3.82)

A solution to the nonlinear least squares problem is then found by iteratively mini-
mizing the quadratic function:

x̂(k+1) = argmin
x

||ht(x̂
(k)) +H

(k)
t (x− x̂(k))− zt||2 (3.83)
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This process is iterated until convergence is obtained. In each iteration, the solution
to the quadratic function is found by finding an expression of the gradient of this
function and setting it to zero. Doing this results in a linear system that has to be
solved for x:

H
(k)T
t H

(k)
t x = H

(k)T
t

(

zt +H
(k)
t x̂(k) − ht(x̂

(k))
)

(3.84)

Solving the linear system of equations gives the new solution x̂(k+1). The process is
repeated iteratively until convergence is obtained. To start the algorithm, an initial
solution x̂(0) is required.

Complex frequency domain measurements

The time domain measurements can be converted to the frequency domain via a DFT
operation. Applying this transformation on the time domain measurements will result
in a new measurement vector, zf . This new vector contains a DC component, possibly
a Nyquist component (when n is even) and two conjugate symmetric complex parts.
The Nyquist component cannot be used, because it contains a phase ambiguity and
does not contain any information on our parameters. We assume that the signals are
DC free, so the DC component will also not be used. Furthermore, the two conjugate
symmetric parts contain duplicate information, so we need only one of these parts.
The remaining frequency components can be calculated via a cropped DFT transform:

zf = W̃zt with W̃ = W(2:m,:) (3.85)

which can also efficiently calculated using the FFT and afterwards leaving out the
elements we are not interested in. These obtained vector zf with frequency domain
measurements is related to the parameters via:

zf = hf(x) + nf (3.86)

where the frequency domain measurement function here is:

hf(x) =







Yw(ω2) exp
[

hatt,2(x) + jhphase,2(x)
]

...
Yw(ωm) exp

[

hatt,m(x) + jhphase,m(x)
]






(3.87)

Due to the linearity of the DFT transform, the obtained complex noise vector nf is
Gaussian distributed. Because the time domain measurements are white with equal
variance σ2

zt
, and because Re(W̃)Re(W̃)T = Im(W̃)Im(W̃)T = n

2 I, the real and
complex part of zf are also Gaussian distributed with equal variance:

σ2
zf

=
n

2
σ2
zt

(3.88)

Obtaining a maximum likelihood estimate from zf is similar to the approach used
on the time domain measurements. The Jacobian of the measurement function hf (x)
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is similar to the time domain Jacobian, but now is complex valued:

H
(k)
f =







Yw(ω2) exp
[

hmag,2(x̂
(k)) + jhphase,2(x̂

(k))
]

(∇hmag,2 + j∇hphase,2)
T

...

Yw(ωm) exp
[

hmag,m(x̂(k)) + jhphase,m(x̂(k))
]

(∇hmag,n + j∇hphase,n)
T







The linear system of equations in each iteration consists of stacking the real and
imaginary parts together and thus creating a system of equations having only real
valued entries. To illustrate this we calculate a real valued Jacobian matrix A(k) and
a real valued residue vector b(k):

A(k) =

[

Re{H(k)
f }

Im{H(k)
f }

]

(3.89)

b(k) =

[

Re{zf − hf(x̂
(k))}

Im{zf − hf(x̂
(k))}

]

(3.90)

The linear system of equations that has to be solved in each iteration is then given
by:

A(k)TA(k)x = A(k)T (b(k) −A(k)x̂(k)) (3.91)

The resulting estimator is mathematically equivalent to the time domain estimator
and we expect exactly the same performance for both estimators. The advantage
however of the frequency domain estimator is that its computationally more efficient.
In the frequency domain estimator, the DFT only has to be calculated once on the
measurements instead of in every iteration on the Jacobian.

Magnitude spectrum measurements

From the complex frequency domain measurements, we can go to magnitude mea-
surements in the frequency domain by taking the absolute value of the complex data
vector zf . This is the same domain in which the previously discussed spectral shift
estimator operates. We will now investigate how a maximum likelihood estimator
can be obtained for these measurements and how this compares to the spectral shift
estimator. By working in this domain, we will only be able to estimate attenuation
and not the speed of sound, since phase information is discarded. The magnitude
measurements are obtained from the complex frequency domain measurements via:

zmag =







|zf,1|
...

|zf,m|






(3.92)

Since the noise on those real and imaginary parts of zf is additive and independently
Gaussian distributed with variance σ2

zf
, taking the absolute value will result in mea-

surements having a Rice distribution[48], with a pdf of:

p(zmag,i|νi, σ) =
zmag,i

σ2
exp

[

−(z2mag,i + ν2i )

2σ2

]

I0

(

zmag,i
νi
σ2

)

(3.93)
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with νi = |Yw(ωi)| exp
[

hatt,i(x)
]

and σ = σzf . For measurement elements with a
large signal to noise (SNR) ratio, the distribution of the noise on the measurements
converge to a Gaussian distribution. The SNR is defined as:

SNR =
|Yw(ωi)| exp

[

hatt,i(x)
]

σzf

(3.94)

A SNR of three or higher already approximates the Gaussian distribution quite well.
The variance in that case can be approximated with:

σ2
zmag

≈ σ2
zf

=
n

2
σ2
zt

(3.95)

The mean of the random variable zmag,i approximates the value of νi =
|Yw(ωi)| exp

[

hatt,i(x)
]

. Thus for large SNR values we can say that the magnitude
measurement function can be approximated as:

zmag ≈







|Yw(ω2)| exp
[

hatt,2(x)
]

...
|Yw(ωm)| exp

[

hatt,m(x)
]






+ nzmag

(3.96)

where nzmag
is additive Gaussian white noise with variance σ2

zmag
= σ2

zf
= n

2σ
2
zt
.

Finding an approximate maximum likelihood solution then comes down to mini-
mizing yet another non-linear least squares problem. The problem now only involves
the parameters and α0 = x1 and αr = x2, since phase information is discarded when
using magnitude spectrum measurements. The non-linear least squares expression
can be written as:

x̂ML ≈ argmin
x

‖zmag − e−x2hmag(x1)‖2 (3.97)

where the vector function hmag(x1) is defined as:

hmag(x1) =







|Yw(ω2)| exp[−x1|ω1|y]
...

|Yw(ωm)| exp[−x1|ωm|y]






(3.98)

Finding the minimum of this function can be split into two parts. First solving for the
parameters x2, i.e., the parameter that models the frequency independent attenuation,
and later on using that result and then solve for the remaining parameters x1. We will
see that this gives a nice comparison with the approach of the spectral shift estimator
in this approximated maximum likelihood framework.

Finding the minimum of (3.97) for x2, by setting the partial derivative of the
function with respect to x2 to zero, gives us:

−2e−2x2 ||hmag(x1)||2 + 2e−x2zTmaghmag(x1) = 0 (3.99)

which can be solved for x2:

x̂ML,2 = − ln

(

zTmaghmag(x1)

||hmag(x1)||2

)

(3.100)
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We have now found an expression for x2 at the position of the minimum. If we
substitute this expression in the function we want to minimize we obtain an expression
dependent only on x1:

x̂ML,1 = argmin
x1

(

||zmag||2 −
(

zTmag

hmag(x1)

||hmag(x1)||

)2
)

(3.101)

Finding the minimum of this equation is equivalent to finding the maximum of:

x̂ML,1 = argmax
x1

(

zTmag

hmag(x1)

||hmag(x1)||

)

(3.102)

This is justified because the first term is independent of x1 and in the second term
both vectors zmag and hmag(x1) contain only positive elements meaning we can elim-
inate the square. The final expression for x1 now shows that we can solve this prob-
lem via a correlation/matched filter approach. The measurement vector zmag has to
be correlated with different (normalized) realizations of the predicted measurements
hmag(x1)

||hmag(x1)|| . The value of x1 which generates the maximum correlation value is the

value which gives the maximum likelihood solution based on magnitude measure-
ments. This result suggests that, when using the spectral frequency shift method, it
is best to use it with the matched filtering approach with a Gaussian template to find
the center frequency, since that is confirm the approximate likelihood solution that
we have obtained here.

The corresponding value of x2 can be calculated from x1 via (3.100). Finding
the value for x1 is a one-dimensional optimization problem, which we will solve using
Brent’s method [49]. Brent’s method is an efficient method to solve scalar optimiza-
tion problems and is a combination of a golden section search and inverse quadratic
interpolation. As initial bounds of the problem we use 0 as lower bound and an upper
bound which can be chosen based on the object and maximum expected attenuation.

Log magnitude spectrum measurements

Applying a log function on the magnitude spectrum measurements gives us an ex-
pression which is, after subtraction of a remaining constant offset, linear dependent
on the unknown parameters. This is the same domain in which the previously dis-
cussed log spectral difference method operates. Linear problems are easier to solve
than non-linear problems so we will investigate how this affects our problem and how
taking the measurement noise explicitly into account can improve the accuracy of the
estimate with respect to the log spectral difference method.

Taking the log of the magnitude (lm) and removing the offset gives us the log
magnitude measurements:

zlm =







ln |zf,2|
...

ln |zf,m|






−







ln |Yw(ω2)|
...

ln |Yw(ωm)|






(3.103)
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Applying this transformation will lead to measurements with a noise distribution
which is not Gaussian. However, for high SNR values the noise can be approximated as
additive Gaussian noise. The measurement transformation function from the complex
frequency domain to the log magnitude frequency domain is given by:

zlm = glm(zf,Re, zf,Im) = ln
(√

z2f,Re + z2f,Im

)

− ln |Yw(ω)| (3.104)

By linearizing this equation, we can propagate the noise resulting in a variance on
the log magnitude measurements of:

σ2
zlm,i =

(

σzf

|Yw(ωi)| exp[hatt,i(x)]

)2

=
1

SNR2 (3.105)

Meaning that the variance of the log magnitude measurements is frequency dependent
and also dependent on the actual value of the parameters that we want to estimate (x1

and x2). The standard deviation of the log magnitude measurements is actually the
inverse of the SNR. If we want to use the Gaussian assumption on the distribution
of the noise, we have to limit ourselves in the estimation procedure to frequency
components which have a signal above the noise floor. Suppose we have made a
selection of frequency components with a high enough SNR, we will come back to
chosing this set later, ωs = {ω1, . . . , ωk}. Using this set we can setup the linear
measurement relation:

zlm ≈ Hlmx+ nlm (3.106)

where the matrix Hlm is given by:

Hlm =







−|ω1|yd −1
...

...
−|ωk|yd −1






(3.107)

and the noise vector nlm contains additive zero mean Gaussian noise with a covariance
matrix equal to:

Pzlmzlm =







σ2
zlm,1 0 0

0
. . . 0

0 0 σ2
zlm,k






(3.108)

We have to keep in mind here that the covariance matrix is also dependent on the pa-
rameter vector x, as is shown in (3.105). Obtaining a maximum likelihood expression
is then defined by maximizing the function:

xML ≈ argmax
x

1

|2πPzlmzlm |
1
2

e−(Hlmx−zlm)TP−1
zlmzlm

(Hlmx−zlm) (3.109)

A biased estimate of xML can be obtained by ignoring the normalizing term and
minimizing the function:

xML = argmin
x

(Hlmx− zlm)
TP−1

zlmzlm
(Hlmx− zlm) (3.110)
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The solution can be found after setting the gradient of this function to zero, and
results in solving the linear system:

HT
lmP

−1
zlmzlm

Hlmx = HT
lmP

−1
zlmzlm

zlm (3.111)

This might look like an ordinary weighted least squares problem at first, however the
weights (residing on the diagonal of the inverse covariance matrix) and the the selec-
tion of the frequency components ωs are both dependent on the unknown parameters
x. Solving this problem requires an iterative approach at which in each iteration,
the previous solution of x is used in the evaluation of the covariance matrix and the
selection of valid frequency components.

Determining the set of frequencies with a high enough SNR If the full
vector of available positive frequencies is given by ωpos = {ω2, . . . , ωm}, then the
frequency components which are above the noise floor are given by:

ωs =

{

ωi : ωi ∈ ωpos ∧
|Yw(ωi)| exp[hatt,i(x)]

σzf

> SNRth

}

(3.112)

A good value of the selection threshold SNRth has to be determined and will be
discussed during the evaluation of the algorithm. In the first iteration, there is no
previous solution of x available. This is not a big problem, since what we actually are
interested in are the selection of parameters ωs and the weights. We can get initial
estimates of both quantities based on the magnitude measurements zmag:

ωs =

{

ωi : ωi ∈ ωpos ∧
zmag,i

σzf

> SNRth

}

(3.113)

and for the variance used in the weight calculation:

σ2
zlm,i =

(

σzf

zmag,i

)2

(3.114)

For relative high SNR, taking the actual measurement zmag will work, but for lower
SNR the measurement can be too noisy to get a robust initial estimate of ωs and
σ2
zlm,i. The robustness can be improved by removing some of the noise from zmag and

use the noise filtered measurement instead to calculate the initial estimates of ωs and
σ2
zlm,i. The filtered measurement will be obtained by incorporating prior knowledge

on the expected magnitude measurements. This prior knowledge comes mainly from
the known input magnitude signal |Yw(ω)|:

1. We know that the object magnitude measurement has an amplitude not higher,
but probably lower, than the reference magnitude signal.

2. The reference magnitude signal has a certain degree of smoothness which will
also be present in the object magnitude measurement. Due to the bandwidth
limitations of the received transducer, it will be a unimodal smooth function.
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If we look at the noise that is present on the object magnitude measurement and the
amplitudes of the reference magnitude signal, we can restrict the frequency region of
interest, ωs already by:

ωs,w =

{

ωi : ωi ∈ ωpos ∧
|Yw(ωi)|

σzf

> SNRth

}

(3.115)

The region of interest of the object magnitude measurement, which only consists of
the frequency components ωs,w will be refered to as zmag,roi. The object magnitude
signal will have the same amount of smoothness as the reference magnitude signal.
We can express this smoothness by assuming that the reference magnitude signal
can approximately be represented by a second order polynomial. This means that the
third order derivative will be very small and can be added as a constraint for our filter.
The approximate expected mean squared value of the third order derivative of the
object magnitude signal can be calculated by calculating the third order derivative of
the reference magnitude signal. The calculation will be carried out over the selected
region of interest:

ymag =

{

|Y (ωi)| : ωi ∈ ωpos ∧
|Yw(ωi)|

σzf

> SNRth

}

(3.116)

with a third order derivative matrix:

G3 =

(

1

2

)3











−1 3 −3 1 0 . . . 0
0 −1 3 −3 1 . . . 0
...

...
. . .

. . .
. . .

. . .
...

0 0 . . . −1 3 −3 1











(3.117)

The mean squared value of the third order derivative of the reference magnitude signal
is then given by:

σ2
G3,w =

1

kroi

(

G3ymag

)T
G3ymag (3.118)

where kroi represents the number of elements in the vector ymag. This value has to
be scaled down due to the attenuating effects of the object. An approximate scaling
factor can be calculated by considering the ratio of the reference magnitude signal to
the object magnitude signal. We will obtain this ratio by dividing the maximum of the
reference magnitude signal with the maximum of the object magnitude measurement:

σ2
G3

=

(

max
(

zmag,roi

)

max
(

{|Yw(ωi)| : ωi ∈ ωs,w}
)

)2

σ2
G3,w (3.119)

Finally, the filtered object magnitude measurement can be calculated by maximizing:

zmag,f = argmin
z

(

1

σ2
zmag

||z− zmag||2 +
1

σ2
G3

||G3z||2
)

(3.120)
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The first term is a likelihood cost function maximizing the measurement fit and the
second term is a regularizing cost function which maximizes the smoothness of the
solution. The maximum of this optimization function can be obtained by setting its
gradient to zero, resulting in:

zmag,f =

(

I+
σ2
zmag

σ2
G3

GT
3 G3

)−1

zmag (3.121)

where I is the identiy matrix. The resulting filtered object magnitude measurement
zmag,f can now be used in the initialization to calculate ωs and σ2

zlm,i.

Log magnitude and phase spectrum measurements

In the previous linear estimator, we were able to estimate only the attenuating pa-
rameters α0 and αr. If we add the phase of the object measurement, we have obser-
vations of the time delay per unit distance τ0 as well. The phase measurements can
be obtained from the complex frequency domain measurements zf by calculating the
argument. Care should be taken when calculating the argument, since it is a quantity
which ranges between -π and π. To deal with this problem, we use the phase of the

reference measurement Yw and an initial estimate of the parameters α
(k)
0 and τ

(k)
0 in

the phase calculation:

zp,i = arg

{

zf,i
Yw(ωi)

exp
[

− jhphase,i(x̂
(k))
]

}

+ hphase,i(x̂
(k)) (3.122)

The phase measurements zp = [zp,1, . . . , zp,m]T are linearly related to the attenuation
parameters α0 and the time delay per unit distance τ0. However, again the noise
distribution on these measurements is not Gaussian. But also here, for high enough
SNR values the noise can be approximated as additive Gaussian noise. Obtaining the
argument from the complex frequency domain measurements can be performed by
the transformation:

zp = gp(zf,Re, zf,Im) = arctan

(

zf,Re

zf,Im

)

(3.123)

Via linearization the noise can be propagated, resulting in a variance of:

σ2
zp

=

(

σzf

|Yw(ω)| exp[hatt(x)]

)2

(3.124)

Which conveniently is exactly the same variance that we have on the log magnitude
measurements. We can thus use the same selection procedure for ωs, being the
frequency components with a high enough SNR. For this selection of frequencies, the
phase measurement relation is given by:

zp = Hpx+ np (3.125)
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Where the matrix Hp is given by:

Hp =







−ω1 tan
(

π
2 y
) (

|ω1|y−1 − |ω0|y−1
)

d 0 −ω1d
...

...
...

−ωk tan
(

π
2 y
) (

|ωk|y−1 − |ω0|y−1
)

d 0 −ωkd






(3.126)

and the noise vector np contains the additive white Gaussian noise with covariance
matrix:

Pzpzp =







σ2
zp,1 0 0

0
. . . 0

0 0 σ2
zp,k






(3.127)

By combining the log magnitude and phase measurements, we can formulate a linear
estimator for all three parameters, α0, αr and τ0, simultaneously. To do so, we stack
the measurements together:

zlmp =

[

zlm
zp

]

(3.128)

Stack the measurement matrices together:

Hlmp =

[

Hlm

Hp

]

(3.129)

And combine both covariance matrices:

Pzlmpzlmp
=

[

Pzlmzlm 0
0 Pzpzp

]

(3.130)

Obtaining a maximum likelihood estimate is now defined as minimizing the function:

x̂ML = argmin
x

(Hlmpx− zlmp)
TP−1

zlmpzlmp
(Hlmpx− zlmp) (3.131)

Here again, the covariance matrix is dependent on the parameters. For a given co-
variance matrix, calculated from an initial guess of the parameters, the minimum can
be found by setting the gradient of this function to zero, which results in solving the
linear system:

HT
lmpP

−1
zlmpzlmp

Hlmpx = HT
lmpP

−1
zlmpzlmp

zlmp (3.132)

By repeatedly solving this linear system and using the newest solution x̂(k) to calculate
a new covariance matrix, we can converge to the minimum of this function.

Summary

We have proposed a set of ultrasound parameter estimators, all set in a different mea-
surement domain, derived by some operation from the original input time domain
measurements zt. Two of these domains, zmag and zlm correspond with the mea-
surement domains on which the, previously reported spectral shift and log spectral
difference methods operate. The obtained expressions in these domains show how the
spectral shift and the log spectral difference estimators would have to be modified to
make them approximate maximum likelihood estimators. An overview of all discussed
measurement domains is displayed in Table 3.3.



3.4. Estimating acoustic attenuation 91

Symbol Model Noise variance2 Parameters

zt Non-linear σ2
zt

α0, αr, τ0

zf Non-linear n
2σ

2
zt

α0, αr, τ0

zmag Non-linear n
2σ

2
zt

α0, αr

zlm Linear n
2|Yw(ωi)|2 exp[2hatt,i(x)]

σ2
zt

α0, αr

zp Linear n
2|Yw(ωi)|2 exp[2hatt,i(x)]

σ2
zt

α0, τ0

Table 3.3 Overview of the measurement domains that can be used in ultrasound
propagation parameter estimation. In this chapter, for each of the measurement
domains a suitable estimator is derived.

3.4.3 Evaluation

The evaluation consists of two parts, checking the measurement model by applying
it to experimentally obtained measurements on an attenuating phantom and the sec-
ond part is about the investigation of the performance of the proposed ultrasound
propagation parameter estimators.

Measurement model validation

The experimental setup to investigate the measurement model is displayed in Figure
3.10. It consists of a sending ultrasound transducer and a receiving needle hydrophone

Scope

Imaging Tank

Needle

Transducer
Hydrophone Ultrasound

Object

PC
Function

Generator

Figure 3.10 Instrumental top view of the measurement model validation setup.

transducer. The hydrophone transducer was connected to a digital oscilloscope which
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samples the data at a frequency of 500 MHz. An object can be placed in the path
between sender and receiver. This is a typical scenario that would occur in a ul-
trasound transmission tomography setup. Using this setup we have performed two
sets of measurements to investigate the measurement model, each with a different
reference signal.

First reference signal The first reference signal was created by setting the func-
tion generator to a two-period sine wave of a frequency of 5 MHz. The ultrasound
transducer used in this case had a center frequency of 5 MHz. As object an Agar/Milk
based attenuation object, having a thickness of 48 mm, was used. The resulting sig-
nal, as it was measured with the hydrophone and sampled with the oscilloscope, is
displayed in Figure 3.11a. Because a two-period sine wave was user here, the resulting
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Figure 3.11 Experimentally obtained signals with a two-period sine wave with a
frequency of 5 MHz. Only the interesting part of the power spectrum is shown.

reference signal is not very broadband. The ideal measurement would be as broad-
band as possible, so that the measurement model can be verified over a wide range
of frequencies. The attenuating effects of the Agar/Milk object are clearly visible in
both the time and frequency domain plots. An obvious signal distortion due to the
attenuation, which would have to be caused by dispersion in attenuation over the
dominant frequency range is not immediately visible. Using this measured object sig-
nal and the input reference signal, we can try to predict the object signal that results
from the parameters obtained by fitting the measurement model to the measurements.
Three different models were used, in order of increasing complexity. The first model
assumes a frequency independent attenuation and its fit is shown in Figure 3.12a. The
second model assumes dispersion in the attenuation according to a linear power law,
but no dispersion in the speed of sound. The results of this second model are shown
in Figure 3.12b. The final model assumes a frequency power law for the attenuation
and dispersion in speed of sound according to the Kramers-Kronig relations. This
is the measurement model that we assume for the propagation of ultrasound signals
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in the derivation of the estimators. The fit of this final model is shown in Figure
3.12c. From these fits we can conclude that the measurement model, based on the
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Figure 3.12 Experimentally obtained object signals and predicted object signals
from measurements on a reference signal created from a two-period sine wave with a
frequency of 5 MHz.

Kramers-Kronig relations, holds in practice and can be well predicted. We also have
to add that for this, not very broadband reference signal and not highly attenuating
object, the fit that was obtained with the simple model of assuming no dispersion was
also quite satisfactory. To illustrate the attenuation dispersion and the corresponding
phase relation, we have included the attenuation and phase function and how they
compare to the measurements in Figure 3.13. The error bars shown here, derived
from the variance expressions in Table 3.3 for zlm and zp, show the 99.7% interval in
which the prediction of the measurement should be contained. Both the attenuation
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function and time delay function are most of the time within this interval.
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Figure 3.13 Illustration of the measured and fitted attenuation and phase functions
in the frequency domain.
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Figure 3.14 Experimentally obtained signals with a one-period sine wave with a
frequency of 5 MHz. Only the interesting part of the power spectrum is shown.

Second reference signal The second reference signal was obtained by setting the
function generator to a one-period sine wave, see Figure 3.14a for the resulting pulse.
This gives a pulse with a somewhat higher bandwidth, as can be seen from the power
spectrum in Figure 3.14b. Also with this reference signal an object measurement
with an attenuating object was performed. Due to the typical frequency content of
the reference signal, the pulse significantly changes shape after propagating through
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the object. The results of fitting the measurement model to this measurement are
displayed in Figure 3.15. From these results we can conclude that the model mea-
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Figure 3.15 Experimentally obtained object signals and predicted object signals
from measurements on a reference signal created from a two-period sine wave with a
frequency of 5 MHz.

surement model can accurately predict the change in pulse shape due to propagation
through an attenuating measurement. Ignoring the phase information leads to a rea-
sonable fit, much better than completely ignoring dispersion. However, including the
Kramers-Kronig relation increases the model fit substantially, supporting the conclu-
sion that our measurement model is valid in practice.
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Figure 3.16 Illustration of the measured and fitted attenuation and phase functions
in the frequency domain.

Estimator performance evaluation

For the evaluation of the proposed estimators we have chosen an approach based on a
Monte-Carlo computer simulation. This allows controlled circumstances with different
signal to noise ratios and simulated distances through the attenuation object. Also
by repeating the simulation a high number of times with a different noise realization
each run, i.e., the Monte-Carlo method, an accurate description of the performance
of the estimators in terms of bias and variance can be obtained. Furthermore, we use
the Cramer-Rao Lower Bound (CRLB) to get an indication of the efficiency of the
proposed estimators. The CRLB is the lowest variance that any unbiased parameter
estimator, given the measurement model and measurement noise distribution, can
theoretically attain.

In this evaluation of the different estimators, we will refer to the estimators using
abbreviations. A list of the estimators, both existing and proposed, together with
their abbreviations, is displayed in Table 3.4.

The Cramer-Rao Lower Bound Let us first look how the CRLB can be calcu-
lated for this measurement model. The measurements are taken in the time domain,
corrupted with uncorrelated additive Gaussian noise having a variance of σ2

zt
. This

results in the following pdf of the measurements zt:

zt ∼ N (ht(x), σ
2
zt
I) (3.133)

The CRLB can simply be calculated in this case by looking at the Jacobian of the
measurement function, Ht, which has been presented in (3.4.2). By evaluating the
Jacobian at the true value of the parameters, we can calculate the CRLB of this
estimation problem according to[31]:

C = (HT
t Ht)

−1HT
t σ

2
zt
IHt(H

T
t Ht)

−1 = (HT
t Ht)

−1σ2
zt

(3.134)
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Abbreviation Method description Measurement

FSMax Spectral shift, using frequency of maximum zmag

FSFM Spectral shift, using first moment zmag

FSMF Spectral shift, using Gaussian matched filter zmag

CFMag Log spectral difference, zlm
i.e., curve fitting withouth weighting

MLTDomain Maximum likelihood on the zt
time domain measurements

MLFFT Maximum likelihood on the zf
complex frequency domain measurements

MagCorr Maximum likelihood on the zmag

magnitude frequency domain measurements
MLMag Maximum likelihood on the zlm

log-magnitude frequency domain measurements
MLMagPhase Maximum likelihood on the log-magnitude

(

zlm, zp
)

and phase frequency domain measurements

Table 3.4 Overview of the estimators and their abbreviating names.

The obtained matrix C is the covariance matrix with the lowest attainable variance
for any unbiased estimator.

Monte-Carlo simulation The accuracy of the results obtained with a Monte-
Carlo simulation depends on the number of samples that is involved in calculating
the results. The outcome of an estimator can be seen as a random variable with
a certain mean and variance. We are trying to get an estimate this mean and the
corresponding standard deviation (square root of the variance) for each estimator. In
order to guarantee a certain accuracy on the Monte-Carlo simulation results, we will
set the number of samples N to such a value that the estimated mean and standard
deviation are both, in at least 95% of the cases, at most 1% away from their true
values. With the help of Appendix D the relation between the estimation accuracy
and the number of samples (runs) N and the true variance σ2

x is given by:

Std [µ̂x] ≈
1√
N

σx (3.135)

Std [σ̂x] ≈
1√
2N

σx (3.136)

Now in order to have an estimate which is in accordance with our accuracy require-
ment we set the number of samples so that 2× Std [µ̂x] ≤ 0.01σx and 2× Std [σ̂x] ≤
0.01σx are both valid. This results in the following value of N :

N =

(

2

0.01

)2

= 40.000 (3.137)
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meaning that we need 40.000 runs to reach the chosen level of accuracy.

Simulation conditions We have chosen to simulate the propagation through an
attenuation object with an attenuation constant of α0 = 0.1 Np/cm/MHz and a
power law constant of y = 1. This is similar to the conditions as they typically are in
soft-tissue. In soft-tissue the attenuation can vary between 0.3 and 3 dB/cm/Mhz[50],
where the conversion between Nepers and Decibel is given by 1 Np = 8.69 dB. The
reference signal that we have used in the simulation was a Gaussian modulated pulse
with a center frequency of f0 = 5 MHz and standard deviation of σf = 1.6 MHz. Two
levels of additive Gaussian noise were simulated. A relative low noise scenario with
SNR = 100 and a high noise scenario with SNR = 10, where the SNR is defined as
the ratio between maximum signal amplitude of the reference signal and the standard
deviation of the Gaussian noise σzt . The SNR is thus related to the conditions in the
reference measurement, the effective SNR on the object measurement would be lower
due to the attenuation of the object.

The spectral shift estimator Since there are several ways to estimate the fre-
quency shift on which the spectral shift method is based, we will first determine
which method is best and use that in the comparison with the other methods. We
have proposed three ways of calculating this shift. The first method was based on
simply using determining the frequency at which the maximum occurs and using
that frequency to determine the shift (FSMax). The second method was based on
calculating the first moment of the magnitude spectrum and to use that as the fre-
quency to determine the shift (FSFM). The last method was to use a matched filter
with the Gaussian template obtained from the magnitude spectrum of the reference
measurement and use a matched filter to calculate the frequency shift (FSMF).

The results of the Monte-Carlo simulation for the different spectral shift estima-
tors are displayed in Figure 3.17. We see that in both the low and high noise scenario
the matched filtering based approach (FSMF) works best. This is not surprisilingly if
we recall the conclusion from section 3.4.2. In that section a maximum likelihood esti-
mator is derived for the magnitude spectrum domain with zmag, on which the spectral
shift estimator also operates. The resulting maximum likelihood estimator looks like
a matched filter approach with the predicted magnitude spectrum. For the rest of
the evaluation, we will continue with the FSMF estimator in the comparison with the
other estimators, and henceforth use the term spectral shift estimator synonymous to
the FSMF estimation of spectral shift.

Now let us see how the FSMF estimator compares against the MagCorr estimator,
both working on the magnitude spectrum measurement. This is interesting to see,
because the MagCorr estimator is derived in the maximum likelihood framework. The
results of this comparison are displayed in Figure 3.18. We see that in the low noise
scenario, the performance of the two estimators is almost equal. In the high noise
scenario, however, at a certain moment the RMSE of the spectral shift estimator starts
to deviate from the RMSE of the magnitude correlation estimator. The biases are
also indicated in these plots to show that they are of minor importance, the estimates
are not very biased compared to the standard deviation.
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Figure 3.17 Estimator simulation of spectral shift implementations for SNR
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Figure 3.18 Comparison between two estimators set in the magnitude spectrum
domain for a low noise (left) and high noise (right) scenario.

The log spectral difference estimator The log spectral difference estimator (CF-
Mag) can be compared to the maximum likelihood MLMag estimator, since they are
both set in the log magnitude domain, zlm. The estimators are very similar, the only
difference is that the MLMag estimator, based on the maximum likelihood frame-
work, takes a different weighting of each frequency component into account, whereas
the CFMag estimator treats each frequency component the same. Both estimators
only operate on a certain range of the spectrum, the boundaries of this range are
selected based on the SNR of each frequency component, indicated with SNRth in the
method descriptions. Evaluation of both algorithms turned out that for the CFMag
estimator a value of SNRth = 2 works best and for the MLMag estimator a value
of SNRth = 1 works best. The results of comparing both estimators in a high and
low noise scenario to each other are displayed in Figure 3.19. From these results we
clearly see that including the weighting that results from using the maximum likeli-
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Figure 3.19 Comparison between two estimators set in the log magnitude spectrum
domain for a low noise (left) and high noise (right) scenario.

hood framework (MLMag) instead of ordinary least squares fitting (CFMag) gives a
substantial improvement in the estimator performance.

Comparison of the maximum likelihood estimators Finally we will compare
the four maximum likelihood estimators to each other. The results of this comparison
are displayed in Figure 3.20. In the low noise scenario, Figure 3.20a, there is a distinct
separation visible between the methods that do incorporate speed of sound dispersion
through the Kramers-Kronig relations (MLMagPhase and MLFFT/MLTDomain) and
those methods that do not (MagCorrelation and MLMag). Obviously, adding this
extra information results in a slightly improved, i.e., with a lower RMSE, estimate
of the attenuation constant. Also the CRLB was calculated and shown here for
comparison. Both the MLMagPhase and MLFFT/MLTDomain estimators reach this
lower bound in the low noise scenario.

In the high noise scenario, Figure 3.20b, we see that especially at the longer
distances the results of the different estimators start to diverge. The overall winner
here are the MLFFT/MLTDomain estimators, which follow the CRLB very well up to
a distance of 3.5 cm. And also interestingly to see is that the MagCorrelation estimator
turns out to be very robust. It outperforms both the MLMag and MLMagPhase
estimators in high noise scenarios.

3.4.4 Conclusion

In this section, the topic of ultrasound propagation parameter estimation, useful as
a pre-processing step in ultrasound transmission tomography, was analyzed. We first
investigated two existing techniques, the spectral shift method and the log spectral
difference method and after that derived five estimators using the maximum likelihood
framework on different measurement domains.

The implementation of the spectral shift method can be done in various ways,
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Figure 3.20 Performance plots of the four proposed maximum likelihood estima-
tors, together with the Cramer-Rao Lower Bound. Shown are a high (left) and a low
(right) noise scenario.
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which all result in a spectral shift estimate from which the attenuation parameter can
be determined. We found that a matched filter technique works best to determine the
spectral shift. A very nice result is that when we try to derive a maximum likelihood
estimator on the same measurement domain, the magnitude domain, we also end up
with an estimator involving some sort of correlation with a custom template shape.
In the spectral shift estimator this template is Gaussian shaped, but in our maximum
likelihood framework derived estimator it has a shape that is dictated by the input
signal and depedent on the actual parameter value.

The log spectral difference method comes down to fitting a straight line to a set of
measurement points. A similar estimator can be derived in the maximum likelihood
framework, on the log magnitude domain, with the difference that a weighted least
squares fit of the measurement points to a straight line needs to be done. Adding
weights to the fitting procedure helps a lot in improving the performance of the
estimator as can be seen from Figure 3.19.

With our proposed estimators, we went one step further by also using the phase
information from the measurements. The Kramers-Kronig relations gives us a relation
between the attenuation function and the phase information. This phase information
is implicitly available in time domain measurements and can be made explicit by
performing an FFT and extracting magnitude and phase measurements from this. We
found that the best way of using this extra information is by using just the original
time domain measurements, i.e., without applying any non-linear transformations
to go to another measurement domain. This difference in estimator performance is
especially noticeable in high noise scenarios, the time domain measurements gives
then much better results as can be seen from Figure 3.20. The reason why the
estimator derived on the original time domain measurements works best is because
on this domain the measurement errors are truly Gaussian distributed, any non-linear
transform will propagate to another noise distribution, with the effect being larger in
the higher noise scenarios.
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Reconstruction of speed of sound and

acoustic attenuation1

Abstract

A problem that typically occurs in ultrasound transmission tomography, and which
is also encountered in our PER-PAT imaging setup, is the reconstruction of acoustic
property distributions from projections through these distributions along ray paths.
The acoustic property distributions, being the speed of sound and acoustic atten-
uation, can be reconstructed by setting up a measurement model that relates the
projection measurements to the source distributions. This comes down to tracing the
correct ray paths through the image for all combinations between passive elements
(the sources) and ultrasound detector elements in our transducer array (the receivers).
We propose an algorithm which takes into account the bending of ray paths, caused
by speed of sound inhomogeneities, and which is capable of working with multiple
passive element in our PER-PAT setup. A numerical analysis and experimental eval-
uation show that a substantial reduction in measurement time is possible by using
multiple passive elements while maintaining a similar level of image reconstruction
quality.

1Parts of this chapter are under communication as:
i) J. Jose, G.H. Willemink et al, “Passive element enriched photoacoustic computed tomography
(PER-PACT) for hybrid imaging”, Optics Express
ii) S. Resink, J. Jose, G.H. Willemink et al, “Multiple passive element enriched photoacoustic com-
puted tomography (multi PER-PACT)”, Journal of Biomedical Optics
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CHAPTER 4. RECONSTRUCTION OF SPEED OF SOUND AND ACOUSTIC

ATTENUATION

4.1 Introduction

In photoacoustic imaging, depending on the object that is being imaged and the re-
quired resolutions, it might be necessary to take speed of sound inhomogeneities in the
object into account in the reconstruction. See also further in chapter 5, section 5.3.
We obtain this speed of sound map from photoacoustic measurements. This is pos-
sible because in our PER-PAT system we have placed one or more passive elements,
which act as ultrasound point sources. This allows us to take ultrasound transmission
mode tomography (UTT) measurements. Due to the geometrical placement of the
passive elements opposite to the ultrasound detectors, the generated ultrasound sig-
nals do not interfere with the simultaneously generated photoacoustic signals from our
object. We have developed a method to obtain accurate projections of both acoustic
attenuation and (inverse) speed of sound through the object in a maximum likelihood
framework from these ultrasound measurements (see chapter 3). These projections
are the integration of the quantity of interest over a path between a source and de-
tector. When speed of sound is the quantity of interest, the projection is given as a
time delay and when acoustic attenuation is the quantity of interest, the projection
is given as the total attenuation along the path. With our PER-PAT setup it is thus
possible to reconstruct two acoustic property distributions, being the speed of sound
distribution and the acoustic attenuation distribution of the object. In this chapter
we will present a method to reconstruct these acoustic property distributions from
the obtained projection measurements.

4.2 Measurement model

The measurement model of UTT is very similar to what is seen in X-ray CT Imaging.
Every measurement is a projection along a path between a source and detector pair.
The path, however, is not necessarily a straight line. Also, in our PER-PAT setup,
there can be multiple sources when more than one passive element is being used. For
speed of sound, a single projection measurement, which represents a time delay over
the path, is given by:

tf (rd, rs) =

∫

l(rd,rs,c)

τ(r)dr (4.1)

where τ(r) = 1
c(r) − 1

c0
is the time delay per unit distance and c0 is the speed of sound

in the reference medium. The path, from source position rs to detector position rd, is
represented with the expression l(rd, rs, c), showing that the path can also depend on
the (unknown) speed of sound distribution c(r). Notice that in fact the speed of sound
measurement model relates the measurement to the time delay per unit distance τ(r).
This is the distribution that will be reconstructed at first, and can then simply be
converted to the actual speed of sound distribution via:

c(r) =
c0

1 + c0
τ(r)

(4.2)
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For acoustic attenuation we have a very similar measurement relation:

a(rd, rs) =

∫

l(rd,rs,c)

α0(r)dr (4.3)

where α0(r) is the unknown attenuation distribution. As mentioned before, the path
between source and detector is not necessarily a straight line. In the absence of
refraction, or when refraction is so small that it can be ignored, the path would be
a straight line. In general, however, the path can be bent and curved[51, 52] which
complicates the reconstruction. The only information that is always known in advance
about a projection path are its starting point and its end point.

The complete set of measurements consists of different projections, each obtained
with the object rotated to a different projection angle. In such a projection are
measurements at all the different sensors (detectors) arising from each source. For
the single passive element scenario there would be one source and the geometry of a
single projection then looks like Figure 4.1a. For the multiple passive element scenario
there are more sources in a single projection (rotation) and the geometry will look like
Figure 4.1b. These figures show that using multiple sources has the advantage that

(a) (b)

Figure 4.1 Geometry overview of the ray paths in a single projection (rotation).
On the left (a) the scenario with a single passive element is shown and on the right
(b) the scenario with multiple passive elements is shown. The rays are drawn here
as straight lines, but in reality they can be bent. The grid represents the underlying
unknown acoustic property distribution.

more information about the unknown object (speed of sound/acoustic attenuation)
can be obtained in a single projection. We hope that this results in an increased
resolution or better signal to noise ratio.

4.2.1 Discretizing the measurement model

The projection paths have to be numerically evaluated over the discretized acoustic
property distribution. We will represent the acoustic property distribution on a rect-
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angular grid as displayed in Figure 4.1. The off-grid points will be calculated by 2-D
bilinear or bicubic interpolation. Once the projection paths are known, the problem of
reconstructing the acoustic property distribution is a linear problem. Each projection
measurement is a weighted sum of the pixels representing the acoustic property dis-
tribution. We use a ray driven approach to numerically calculate the projections over
the paths, meaning that we sample along segments of each ray/path. Every sample
of the ray can be expressed as a linear combination of one (using nearest neighbor) or
more (using bilinear or bicubic interpolation) pixels around the sample. Subsequent
sampling of the ray then gives us the weighted sum of pixels for each projection. If
we represent the unknown pixels in a parameter vector x, the ray driven discretized
measurement model with a projection matrix H and the projection measurements in
a measurement vector z, we have the linear model:

z = Hx (4.4)

which relates the acoustic property distribution to the measurements. Everything,
from the number of projections to the number of passive elements is contained in the
projection matrix H. The reconstruction problem, assuming the paths are known, is
then defined as solving the linear system of equations.

4.2.2 Passive element positioning

The positioning of the passive elements is bound by four constraints. The first con-
straint is that the passive element has to be properly illuminated by the laser light.
The second constraint is that the signal generated by the passive element should not
overlap with any of the PA signals from inside the object. The third constraint is that
the signals from different passive elements should not interfere with each other. The
final constraint is that at all passive elements should be positioned on or outside, but
not inside, a line of sight between the detector array and passive element that does
not pass through the object. These constraints are nicely visualized in Figure 4.2. A
complete area is marked here in which it is possible to position passive elements. The
reason for having the first three constraints is straightforward and has to do with the
detection/extraction of the projection measurements. When signals start to overlap it
is not possible anymore, or more difficult, to extract the attenuation and correct time
delay. The reason behind having the final constraint is that a line of sight with one of
the detectors can be used as a reference indicator. Along the line of sight we expect
zero time delay or attenuation between reference and object measurements. This al-
lows us to correct for small temperature changes in the imaging tank or small position
changes of the passive elements between the object and reference measurement.

To get an idea of the effect of the number of passive elements and to investigate
the optimal geometrical arrangement of the passive elements, we conducted a study
of the projection matrix H. The behavior of this matrix, defined by its singular
values, as a function of the number and placement of the passive elements tells us
what geometrical configuration is optimal.
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Figure 4.2 Overview of the passive element positioning possibilities.

Optimal single passive element position

First we have investigated what the optimal position of a single passive element would
be. A projection matrix H was created for different passive element positions, with
90 projections and 32 detector elements consistent with the geometry of the setup
and the typical measurement protocol used. An overview of the geometry that was
used is displayed in Figure 4.3a. The passive element was positioned within the
area marked as PE trial area. For every position the condition number[53] of the
matrix, which is an indication for the stability of the solution to the inverse problem,
was calculated. A low condition number indicates that the inverse problem is well-
conditioned whereas a high condition number indicates the problem is ill-conditioned.
The results are shown in Figures 4.3b and 4.3c. In Figure 4.3b, where an image size
of 32 × 32 was used, we see an irregular pattern in the condition number plot. The
irregular pattern shows that the condition number is very sensitive to the actual ray
paths through the object, which means that the grid spacing could be too small for a
good reconstruction without any regularization. Therefore, an image size of 16 × 16
was also investigated and displayed in Figure 4.3c which does not show this irregular
pattern. Note however, that in an actual reconstruction, regularization will be used to
stabilize the reconstruction, meaning that the irregular pattern has no negative effect
on the reconstruction. A trend can obviously be identified from both figures, showing
that the passive element should not be positioned too close to the object. Surprisingly,
these results can well be combined with the bounds that we have defined based on
line of sight and PA signal boundaries, as shown in Figure 4.2. From these results we
can thus conclude that, within the bounds sketched in Figure 4.2, the position of the
passive element is not very critical for the stability of the inverse problem.
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Figure 4.3 Investigation of the optimal position of the passive element for image
reconstruction based on the condition number of the projection matrix H. The top
figure shows an overview of the geometry and the bottom two images show plots of
the condition number for two different image grid sizes.
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The number and positioning of more passive elements

Based on the analysis just presented and the earlier mentioned bounds on passive
element positioning, we will line our passive elements up on a line. This line is in sight
with the bottom detector element. The passive elements will be evenly distributed
on this line. To find out what the effect of having more passive elements is, we again
investigated the condition number of the projection matrix. This time an image grid
size of 32 × 32 pixels and 64 × 64 pixels were used, so that the resolution effects of
having more than one passive element can also be studied. The calculated condition
numbers for these configurations are displayed in Figure 4.4. From these results it can

Nr of passive elements

lo
g
1
0

(

co
n
d
(

H
T
H
)
)

0 5 10 15 20
3.6

3.8

4

4.2

(a) Grid size of 32 × 32 pixels

Nr of passive elements

lo
g
1
0

(

co
n
d
(

H
T
H
)
)

0 5 10 15 20

5.2

5.4

5.6

5.8

6

(b) Grid size of 64 × 64 pixels

Figure 4.4 Plots of the condition number as a function of the number of passive
elements. The passive elements are positioned on a line of sight with the bottom
detector element, the distance between the first and last passive element is 40 mm
and the spacing between the elements is evenly distributed. Two different grid sizes
for the reconstruction are shown.

be seen that, for the low resolution case, when going from one to two passive elements
there is a substantial improvement in the conditioning of the problem to be expected.
Furthermore we see that when a higher resolution is chosen, there is improvement to
be expected by adding even more passive elements. We could thus conclude that, the
higher the resolution of the reconstruction, the more beneficial it will be to use more
passive elements.

4.3 Approach

To solve the reconstruction problem, essentially a non-linear system of equations
needs to be solved. It is, however, very easy to formulate this as iteratively solving a
linearized linear system of equations. The non-linearity in the model stems from the
curved acoustic ray paths which are a-priori unknown and dependent on the speed of
sound sound distribution. The approach we will follow, is to start by assuming a model
based on straight ray propagation and then to use the reconstruction result from this
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simple model to calculated curved ray paths for the next step. This procedure can be
iterated until the solution converges.

4.3.1 Solving the linear system

Once the projection has been discretized in a sparse matrix H, the reconstruction
is fairly straightforward. A direct method, however, to solve the linear system is
not possible because the matrix can be quite large, depending on the image size
that has been chosen. We will use an iterative method, LSQR[54], to solve the
linear system of equations. The matrix H can become ill-conditioned, as we have
seen already in the previous section in Figure 4.3b for relatively small image sizes.
This means regularization, the use of prior information on the solution, mostly in
the form of a smoothness assumption, has to be added to the problem. In chapter 5,
section 5.2.4, the regularization topic is more extensively discussed and three different
regularization methods are described there. These regularization methods will be used
here in the reconstruction of the acoustic properties as well. We quickly address the
three regularization methods:

Tikhonov In the well-known Tikhonov regularization method the following solution
is calculated:

x̂Tik = argmin
x

‖Hx‖2 + λ‖Lx‖2 (4.5)

here L is an operator typically representing a high-pass filter which penalizes the
high frequencies in the solution more than the low frequencies. The parameter
λ controls the smoothness of the solution.

Total variation With total variation (TV) regularization, an L1 norm criterion,
instead of a quadratic criterion as used in Tikhonov regularization, is used to
penalize the high frequencies in the solution. The total variation regularized
solution is calculated as:

x̂TV = argmin
x

‖Hx‖2 + λTV(x) (4.6)

where TV(x) =
∑

i

√

(∂xxi)2 + (∂yxi)2 + β2, i.e., the norm of the gradient of
the image. Adding the constant β > 0 offers computational advantages, such
as differentiability when the gradient approaches zero[55].

Krylov-subspace iteration number Regularization can also be obtained by con-
straining the solution to lie in a lower dimensional subspace[56] S:

x̂Constr = argmin
x∈S

‖Hx‖2 (4.7)

this is effectively what happens when a Krylov-subspace method is used such as
LSQR. The solution space is then governed by the iteration number j and the
associated Krylov subspace, i.e., S = Kj

(

HTH, HT z
)

.
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4.3.2 Calculating the ray paths

In the first iteration the ray paths are straight and not dependent on an assumed
speed of sound distribution. In the next iterations, we will use the current estimate
of the speed of sound distribution to calculate the curved ray paths from each passive
element position to each detector position. To trace these rays we will make use of a
solution to the Eikonal equation:

|∇t(r)| = 1

c(r)
(4.8)

numerically calculated with the Fast Marching Method (FMM) [57]. For every passive
element and for every projection this equation has to be solved for t(r), given the
estimated speed of sound map c(r), with the initial condition set to t(rs) = 0. This
results in a time of flight map t(r), which contains for every spatial position the
shortest time of flight through the speed of sound map to the starting point rs, being
the location of the passive element. With this approach, we have thus a way to
calculate the fastest arrival times of the wave front starting at a passive element, to
each of the detector element positions. There are other refraction effects, such as the
formation of multiple wave fronts with possibly slower arrival times, which are not
taken into account using this method. It is, however, a very quick method to find the
first arrival times. From the obtained time of flight map t(r) it is then possible to
trace back the ray path belonging to the shortest arrival time via a gradient descent
approach through the time of flight map. This ray tracing starts at the position of
a detector element and the traced ray will naturally end in the valley which is the
location of the passive element. Ray tracing will be performed by parametrizing the
ray path l as a function of τ , setting l(0) = rd and solving:

dl

dτ
= −∇t

(

l(τ)
)

(4.9)

To solve this equation we use the fourth order Runge-Kutta[58] (RK4) method. The
RK4 method is iterated, until we are at a predefined distance from the final point rp.
We then step in a straight path from there to the final point in order to avoid strange
behavior close to the final point where the gradient of t(r) might not be well defined.

FMM implementation

The FMM uses first order derivatives to find the solution to the differential equation,
to obtain a high accuracy we use a second order accurate scheme to calculate these
first order derivatives. Using FMM with these second order accurate finite differences
is called the high accuracy fast marching method (HAFMM)[59, 57].

4.4 Results

We have conducted a simulation study and several experiments with our PER-PAT
setup. The goal was to test our approach on curved ray corrections and acoustic
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property reconstructions and also to find out the effects in practice of using more
then one passive elements.

4.4.1 The linear 128 element array

Our first generation PER-PAT setup was equipped with a single passive element and
a 128 element linear array, as mentioned in chapter 1. The geometry of this array
was described in chapter 2 and displayed in Figure 2.1a. Taking measurements with
this setup took relatively long time, because reading out the complete 128 element
array using the 4-way multiplexer requires 32 different excitations of the laser. Also
there were problems with accurate synchronisation between the laser excitation and
detector array measurements, which led to a substantial amount of correlated noise
in both the time of flight and attenuation measurements. Nevertheless, we will show
the results obtained with this first generation system, since noise filtering on this
specific correlated noise pattern has been shown to work very well. Overall, reasonable
reconstructions have been obtained with this system. Because the sensor spacing in
the 128 element array is smaller than in the curved 32 element array, Figure 2.1b,
potentially higher resolution images can be reconstructed with it.

We will show the result on an Agar phantom, with a circular inhomogeneity of
Agar doped with 2% carbon, and a rectangular inhomogeneity of Agar doped with of
1% carbon[60], as displayed in Figure 4.5.

Agar+Carbon 1%
Agar 3%

26 mm

5 mm

1510 m/s

1505 m/s

Water
1500 m/s

Agar+Carbon 2%
1510 m/s

6 mm

Figure 4.5 Geometrical layout of the phantom used 128 element linear array setup.

The result of extracting the projection data of the integrated attenuation constant
is displayed, in the form of a sinogram, in Figure 4.6a and the sinogram with the
extracted time delays is displayed in Figure 4.6b. The attenuation that is estimated
here is the frequency independent attenuation, because with this setup it was not
possible to measure a stable signal from the passive element. We come back to
using frequency dependent and frequency independent attenuation in the section on
experimental evaluation of the curved 32 element array setup. Inspection of the
results shows that there is quite some noise in the sinogram. However, if we look
closely, we see that the measurements in groups of four, due to the 4-way multiplexer,
are all similarly corrupted with an additive noise term working on all four sensors
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(a) Raw acoustic attenuation projection mea-
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(b) Raw time of flight projection measurements
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(c) Filtered acoustic attenuation projection mea-
surements
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(d) Filtered time of flight projection measure-
ments

Figure 4.6 Raw and filtered sinograms of acoustic attenuation and time delay for
an experiment with the phantom displayed in Figure 4.5 on the 128 element linear
array setup.

simultaneously. The fact that the noise on the sinogram measurements is correlated
can be exploited in a noise filtering algorithm. To filter out some of the noise, we
make use of the covariance matrix that describes these correlations. A maximum
a-posteriori (MAP) framework can be used to realize the filtering. The unknown
true sinogram can assumed to be smooth (prior information) and a noisy observation
(with known covariance matrix) of the true sinogram is available. Filtering can then
be performed by maximizing:

xfilt = argmax
x

p(z|x)p(x) (4.10)

Here x represents the true sinogram without noise and z is the noisy observation of
this sinogram. The pdf p(z|x) represents the relation of the observed sinogram to
the true sinogram. We assume that the observation, as displayed in Figure 4.6a and
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Figure 4.6b, is directly related to the true sinogram plus an additive Gaussian noise
term:

p(z|x) ∝ exp

[

−1

2
(z− x)TP−1

zz (z− x)

]

(4.11)

where Pzz is the covariance matrix which correctly represents the correlation in the
measurement data. For the prior information on the true sinogram, represented by
the pdf p(x), we assume a certain degree of smoothness on the sinogram. We do this
by assuming that a higher order gradient of the sinogram should be small

p(x) ∝ exp

[

− 1

2σ2
G

(Gx)T (Gx)

]

(4.12)

where G represents the gradient operator on the sinogram x and σ2
G represents the

variance on the gradient and should be set to a low value that corresponds to the
expected smoothness of the true sinogram. Since a sinogram is periodic along the
projection angle direction, the gradient operator will be made periodic along that
direction as well. Maximization of the pdf in (4.10) comes down to minimizing the
quadratic function:

xfilt = argmin
x

[

(z− x)TP−1
zz (z− x) +

1

σ2
G

(Gx)T (Gx)

]

(4.13)

This can be minimized by setting the gradient of the quadratic function to zero and
solving the resulting linear system. The number of unknowns in this linear system is
quite high, it equals the number of sensor elements times the number of projection
angles. But due to the sparsity of the linear system we can efficiently solve the system
using the LSQR algorithm[54]. The results of noise filtering are displayed in Figures
4.6c and 4.6d, showing the effectiveness of the noise filtering.

Reconstruction Results

Finally, after obtaining both the (filtered) integrated attenuation sinogram and the
(filtered) time delay sinogram, acoustic attenuation and speed of sound distributions
can be reconstructed. For the reconstruction, we use the reconstruction method
with iteration number regularization as earlier described. The sensor array used in
our experimental setup contains 128 elements, of which 8 elements are defect. The
reconstruction is based only on the 120 working sensor elements and the projection
matrix H is adjusted to include only measurements of the working sensors.

Reconstructions were performed on both the raw sinograms and noise filtered
sinograms. The reconstruction results for acoustic attenuation are displayed in Fig-
ures 4.7a and 4.7c and the reconstruction results for speed of sound are displayed in
Figures 4.7b and 4.7d. From this we can conclude that noise filtering improves the
reconstruction result by a large amount and that our approach of acoustic property
reconstruction works. An artifact that is very prominent, especially in the attenua-
tion reconstruction, is the circular interface surrounding the phantom. This artifact
is introduced by by false attenuation estimates on rays passing along the boundary
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using the raw projection measurement
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(c) Reconstructed acoustic attenuation distribu-
tion using the filtered projection measurement
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(d) Reconstructed speed of sound distribution
using the filtered projection measurement

Figure 4.7 Raw and filtered reconstruction results of acoustic attenuation and
speed of sound for an experiment with the phantom displayed in Figure 4.5 on the
128 element linear array setup.

of the Agar object, caused by ray refraction. These false attenuation estimates are
clearly visible in the sinogram in Figure 4.6c. We will come back to this artifact in
the section on experimental results of the 32 element curved array.

4.4.2 Simulation study for ray refraction correction

The previously described results of the 128 element linear array were obtained without
using the ray refraction correction algorithm. We will now first investigate our ray
refraction correction approach on a numerical phantom. This gives us an idea for the
required number of iterations and whether the method will work as predicted.

High resolution numerical phantoms were used to generate the data used in this
study. The numerical phantoms are displayed in Figure 4.8. For the generation of
speed of sound and acoustic attenuation projection measurements, we calculated the



116
CHAPTER 4. RECONSTRUCTION OF SPEED OF SOUND AND ACOUSTIC

ATTENUATION

ray paths based on the numerical phantom with the HAFMM method. Projections
were then obtained by tracing the ray paths over the speed of sound and acoustic at-
tenuation distributions. These result in the sinograms of time of flight and integrated
attenuation.
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(b) Acoustic attenuation phantom

Figure 4.8 Overview of the numerical phantoms used in the ray refraction correc-
tion study.

To investigate the impact of the curved rays on the reconstructions of the acoustic
parameters, we reconstructed the data using a straight ray approach and the pro-
posed curved ray approach. The results of applying both approaches on the speed of
sound and acoustic attenuation reconstructions are displayed in Figure 4.9. We can
clearly see that using the straight ray approach we are unable to reconstruct both
distributions correctly. The acoustic attenuation reconstruction, Figure 4.9b, is not
anymore recognizable to the original phantom. The speed of sound reconstruction,
Figure 4.9a, gives the correct trends, but the shape is very much distorted.

Next we investigated the iterative approach with ray refraction correction. The
reconstruction from a previous iteration is now used to calculate the bend rays in
the next iteration. The results look very successful. Both the speed of sound, Figure
4.9c, and the acoustic attenuation, Figure 4.9d, distribution are correctly distributed.
Only minor artifacts remain visible in the acoustic attenuation reconstruction. The
displayed results were obtained using 15 iterations which were enough for the algo-
rithm to converge to a stable solution.

4.4.3 The curved 32 element array

Finally, an experiment on the 32 element curved array was performed which we used
to investigate the multiple passive element method. A geometrical overview of the
phantom used in this experiment is displayed in Figure 4.10. For this measurement,
a set of nine passive elements was used. The positions of these passive elements,
estimated using the algorithm described in Chapter 2, are displayed in Figure 4.11.
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Figure 4.9 Speed of sound and acoustic attenuation map reconstruction results.
The top row show the results of assuming linear propagation of sound rays and the
bottom row shows the results of using the iterative correction algorithm with curved
rays (15 iterations were used). The images on the left are the speed of sound recon-
structions and the images on the right the acoustic attenuation reconstructions.
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Figure 4.10 Photograph and geometrical layout of the phantom used in the 32
element linear array setup to test the multiple passive element approach.

Also displayed are the center of rotation and the position of the sensor array.
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Figure 4.11 Positioning of the passive elements in the multiple passive element
experiment. The nine passive elements are numbered from left (1) to right (9).

Speed of sound results

The time delay sinograms that have been extracted from the reference and object
measurements of this experiment, using the techniques described in Chapter 3, are
displayed for two different passive elements in Figure 4.12. From these sinograms it
is clear that the furthest away from the object positioned passive element, number
nine, has a full field of view that encapsulates the complete object. The closest to the
object positioned passive element on the other hand, number one, has only a partial
view of the object. Note that the element numbers 2, 10 and 18 are not working
properly and as such do not contain the correct time delay.
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(a) Passive element nr 1
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(b) Passive element nr 9

Figure 4.12 Extracted time delay sinograms from the measurement to test the
multiple passive element approach. The units of the time delays are in µs.

Multiple passive elements with a limited number of projections The full
experiment was performed with 90 projection over a full rotation of 360◦. To investi-
gate the advantage of using more passive elements, we started by using only a subset
of nine projections, where the resulting rotation step size between the individual pro-
jections is 40◦. The results of these limited projection reconstructions are displayed
in Figure 4.13. In these results we see that there is obviously an improvement in the
reconstruction when more passive elements are used. Using only one passive element,
Figure 4.13a, only gives us a good reconstruction of the Agar phantom, but not of
the four inner Agar/Milk structures. The result is much better with three passive
elements, Figure 4.13b, then three of the four inner Agar/Milk structure are clearly
visible. Doubling the number of passive elements to six in total, Figure 4.13c, makes
also the fourth inner Agar/Milk structure visible. Finally, going to the full set of nine
passive elements, Figure 4.13d gives a subtle improvement. For these reconstructions
we used Tikhonov, L2-norm, regularization. We can now conclude that for limited
projection situations, which means less time is necessary to perform the measure-
ment, having more passive elements is very useful and gives enormously improved
reconstruction results.

Multiple passive elements with the full number of projections For a full set
of 90 projections we also investigated the usefulness of having more passive elements.
The reconstructions when using one and nine passive elements in this situation are
displayed in Figures 4.14a and 4.14b. Overall both reconstructions in both cases are
better then with the limited number of projections, there are less artifacts and the
shapes of the structures are better visible. There is however not a big improvement in
the reconstruction when comparing the reconstruction using only one passive element
with the reconstruction using all passive elements. It can even be argued that the
reconstruction using only one passive element is better than using all nine elements.
This is possible when some of the passive elements have moved away from their initial
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(c) Using passive element nrs 1 to 6
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(d) Using passive element nrs 1 to 9

Figure 4.13 Speed of sound reconstructions from only nine projections and with
an increasing number of passive elements used in the reconstruction.
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Figure 4.14 Speed of sound reconstructions from the full 90 projections and with
an increasing number of passive elements used in the reconstruction.
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positions in the reference measurement or when there are other inconsistencies in the
measurements. These inconsistencies can be so small that they are unnoticed in the
the lower resolution reconstructions, such as in the limited projection reconstructions
where more regularization is used. But for higher resolution reconstructions the neg-
ative effect of these inconsistencies can be higher than the positive effect of adding
more information to the inverse problem, which is what we observe in Figure 4.14b.
For a high number of projections we can thus conclude that there is no significant
improvement to be expected from adding more passive elements to the setup. The
best reconstructions have been obtained with passive element number one, which is
positioned closest to the object and contains the most information in its measurement.

Total variation regularization Finally the effect of total variation, i.e., L1-norm,
regularization was tested on the speed of sound reconstructions. We expect that with
this regularization the edges in the reconstruction will be preserved while the uniform
areas will contain less noise. The result of applying this regularization is displayed in
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Figure 4.15 Speed of sound reconstruction from the full 90 projections using the
first passive element. For this reconstruction Total Varation, L1-norm, regularization
is used.

Figure 4.15. Compared to the L2-normal regularization, Figure 4.14a, the expected
improvements are clearly visible and it can be concluded that this regularization works
very well.

Attenuation results

Attenuation sinograms, using the frequency dependent attenuation estimator which
was introduced in Chapter 3, are displayed in Figure 4.16. The attenuation model
used was based on the linear with frequency increasing attenuation function, α(ω) =
α0|ω| + αr. What we see from these sinograms is that there is no clear transition
from attenuation to no attenuation, which we would expect at the boundaries of the
object. Instead we see that there is attenuation and amplification of the signal at the
object boundary, which is visible around sensor element number five. The expected
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(b) Passive element nr 9

Figure 4.16 Extracted frequency dependent attenuation (linear increasing with
frequency) sinograms from the measurement to test the multiple passive element
approach. The units are in Np/MHz.

boundary can nicely be observed in the time delay sinograms in Figure 4.12. These
attenuation and amplification effects happen at the boundary of the object, where
ray refraction effects could occur. We expected that ray refraction would result in an
amplitude effect of the propagated signal, because refraction changes the density of
rays, resulting in signal amplitude attenuation and amplification, but not in a signal
shape change. The frequency dependent part of the attenuation function, governing
the signal shape, would therefore still be the same. Since the frequency dependent
attenuation constant is not related to the signal amplitude, only to the signal shape,
we expected to be insensitive to ray refraction effects. However, our experimental
results indicate that the frequency dependent attenuation constant is changing at
the boundary where ray refraction occurs. Therefore we think that the effects are
caused by multipath propagation, an effect which we have not included in our model
and therefore results in false attenuation and amplification measurements. When two
paths between sensor and detector exist, one through the object and one around the
object, which have a small propagation time difference, the two signals will interfere
with each other so that the assumed model of a measuring a single signal is not
valid anymore. To deal with these multipath propagation effects, a model including
multipath propagation needs to be used. This multipath model is a recommendation
for future work and falls out of the time scope of this research since this was discovered
at the end of the project.

Instead of estimating frequency dependent attenuation, we also investigated signal
amplitude attenuation and ignoring frequency dependency in the model. Thus all
attenuating effects will now be related to a single frequency independent parameter,
i.e., α(ω) = α0. The obtained sinograms for this measured attenuation parameter are
displayed in Figure 4.17. Clearly the predicted amplitude effects near sensor element
number five are visible. However the result looks quite reasonable and better than
the result obtained using the frequency dependent attenuation model, Figure 4.16.



4.4. Results 123

Projection nr

S
en
so
r
n
r

20 40 60 80

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

5

10

15

20

25

30

(a) Passive element nr 1

Projection nr

S
en
so
r
n
r

20 40 60 80

-0.2

-0.1

0

0.1

0.2

0.3

0.45

10

15

20

25

30

(b) Passive element nr 9

Figure 4.17 Extracted attenuation sinograms, assuming attenuation is frequency
independent, from the measurement to test the multiple passive element approach.
The units are in Np.

Reconstruction results We show the attenuation reconstructions on the measure-
ments obtained with the first passive element and using Total Variation regulariza-
tion, because this gave the best result for the reconstruction of speed of sound. The
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Figure 4.18 Attenuation reconstructions for the two attenuation models, only pas-
sive element number one was used on all 90 projections and with L1-norm regulariza-
tion. The units are in Np/(cm·MHz) and Np/cm respectively. The input sinograms
for both reconstructions are displayed in Figures 4.16a and 4.17a.

measurements obtained with both models, one assuming a frequency dependent and
independent attenuation and one assuming only frequency independent attenuation,
were reconstructed and the results are displayed in Figure 4.18. Both reconstructions
show the four inner Agar/Milk structures and the outer Agar phantom, however the
frequency independent model gives a much better reconstruction with almost no arti-
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facts. In the reconstruction using the frequency dependent attenuation, Figure 4.18a,
there are artifacts at the boundary of the object caused by the previously discussed
multipath effects. We can conclude that the frequency independent attenuation recon-
struction is quite satisfactory, and expect that the frequency dependent attenuation
reconstruction can be improved by using a multipath propagation model.

We also investigated the limited projection scenario with only nine projections.
The reconstruction results when using only one and all the nine available passive
elements are displayed in Figure 4.19. Also here it is visible that using more passive
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Figure 4.19 Attenuation reconstructions from only nine projections and with an
increasing number of passive elements used in the reconstruction.

elements really enhances the image quality of the reconstructions.

4.5 Conclusion and future work

In this chapter we have presented a method to reconstruct both speed of sound and
acoustic attenuation from projection measurements. These projection measurements
are extracted from the reference and object measurements using the techniques de-
scribed in Chapter 3. A measurement model was formulated which, once acoustic
ray paths are known, linearly relates the projection measurements to the unknown
acoustic property distributions. A reconstruction method is proposed by solving the
resulting, large and sparse, linear system of equations using LSQR combined with
proper regularization.

The influence of the number of passive elements on the inverse problem is investi-
gated by analyzing the condition number of the projection matrix. Also the optimal
geometrical placement of the passive elements was investigated. It was found that
placement of the passive elements should always be on a line of sight between one side
of the detector array and the element itself and that the elements positioned closest
to the object contribute the most information.

An iterative procedure was proposed to correct for ray refraction effects, by switch-
ing between ray tracing through an estimated speed of sound map using the Fast
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Marching Method and estimating the speed of sound map using the predicted re-
fracted rays.

Using experimental evaluation we have shown that our proposed technique allows
us to reconstruct speed of sound as well as acoustic attenuation distributions from
photoacoustic measurements by adding one or more passive elements to our setup.
The reconstruction results of both speed of sound and acoustic attenuation are good,
the reconstructed distributions show the correct physical values. A noise filtering
algorithm was successfully applied to the noisy measurement data obtained with the
128 element linear array. The best reconstruction results have been obtained with
Total Variation, i.e., with an L1-norm.

Problems have been encountered when reconstructing frequency dependent atten-
uation. We suspect that these problems are caused by multipath ray propagation
effects which are not included in our current measurement model. An improvement
for future work would be to extend the model to multipath ray propagation, this might
however be difficult. Also we have obtained good results with the current model and
using frequency independent attenuation. Finally for speed of sound reconstructions
there is no problem with the current model.
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5
Reconstruction of optical absorption1

Abstract

The reconstruction of the optical absorption distribution inside an object is the gen-
eral problem that is considered in photoacoustic image reconstruction. A popular and
widely used approach to solving this problem is the Filtered Back Projection (FBP)
algorithm, invented originally for X-Ray CT imaging. With this algorithm an approx-
imate solution, which can be calculated with very low computational complexity, is
obtained. Solutions having a higher accuracy are possible by using iterative methods,
which however require much more time to converge to a solution. We have investi-
gated the general photoacoustic image reconstruction problem. An efficient way of
representing the source distribution and calculating the required projection integral
was proposed and an easy to calculate preconditioner to speed up the convergence
speed of iterative algorithms was proposed. Furthermore we presented a new way
to compensate for speed of sound corrections by making use of the Fast Marching
method. Finally we outline an approach that can be used to correct for motion ar-
tifacts in photoacoustic imaging by attaching landmarks to the object that is being
imaged.

1A part of this chapter is under communication as:
G.H. Willemink et al, “A fast iterative reconstruction method using preconditioning for photacoustic
computed tomography”, IEEE Transactions on Medical Imaging
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5.1 Introduction

This chapter consists of three different sections, all related to the reconstruction
of the optical absorption distribution. In the first section, the general problem of
photoacoustic image reconstruction is considered. The reconstruction can be done
in either an iterative or a direct way, both have their advantages and disadvantages
which will be discussed. Some new ideas on image representation and preconditioning
to accelerate the iterative methods will be presented there as well. Then in the
second and third sections two modifications of the reconstruction will be discussed.
First we discuss how the reconstruction can be modified to include speed of sound
inhomogeneities. After that we discuss how motion correction can be applied, when
unknown motion has occurred to the object during measurement acquisition.

5.2 Photoacoustic image reconstruction

This section discusses solutions to solve the optical absorption reconstruction problem.

5.2.1 Photoacoustic measurement model

As seen in section 1.2, the generation and propagation of photoacoustic pressure waves
in acoustically non-attenuating and homogeneous media, i.e. with a constant speed
of sound, is governed by the following partial differential equation:

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= − β

Cp

∂I(t)

∂t
A(r) (5.1)

Here A(r) represents the optical absorption distribution of the object as a function of
spatial r. I(t) represents the illumination profile of the laser source as a function of
time. β and Cp are the volume thermal expansion coefficient and the specific heat of
the object. The pressure that will be generated is given by p(r, t) as a function of both
position and time. The speed of sound in the medium and the object is given by c.
The solution to such a wave equation can be calculated by convolving the source term
on the right with the Green’s function of the wave equation. The Green’s function
represents the solution of the wave equation to an impulsive source and is given by,
see Appendix A:

G(r, t) =
−1

4π‖r‖δ
(

1
c
‖r‖ − t

)

(5.2)
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Convolving this Green’s function with the source term of the wave equation,

− β
Cp

∂I(t)
∂t

A(r) gives the solution of the build up pressure function:

p(r, t) = G(r, t) ∗r,t
(

− β

Cp

∂I(t)

∂t
A(r)

)

(5.3)

= − β

Cp

(

G(r, t) ∗r A(r)
)

∗t
∂I(t)

∂t
(5.4)

=
β

4πCp

∫∫∫

A(r′)

‖r− r′‖δ
(

1
c
‖r− r′‖ − t

)

dr′ ∗t
∂I(t)

∂t
(5.5)

=
β

4πCp

(

1

t

∫ ∫

‖r−r′‖=ct

A(r′)dr′
)

∗t
∂I(t)

∂t
(5.6)

Now suppose we position an ultrasound transducer at the spatial position r. With
the ultrasound transducer we can measure the generated pressure wave, which results
in a measurement of:

p̃(r, t) = p(r, t) ∗ hIR(t) (5.7)

where hIR(t) represents the impulse response of the transducer. In this model, diffrac-
tion effects have been ignored. Including diffraction effects, due to the finite size of
the aperture of the transducer, would lead to an impulse response which is besides
time dependent also spatially dependent, i.e. hIR(r, t). In order to construct the
model we need to have a description of the illumination profile I(t) and the impulse
response of the transducer hIR(t). In practice it might be difficult to measure these
functions directly. However, a practical solution to this problem was introduced by
Wang et al[61], who propose to use the measured response of a photoacoustic point
source to infer these functions. Now positioning a photoacoustic point source at rp,
i.e. A(r) = δ(r− rp), will result in a measured pressure, by using (5.7) and (5.5), of:

p̃δ(r, t) =
β

4π‖r− rp‖Cp
δ
(

1
c
‖r− rp‖ − t

)

∗t
∂I(t)

∂t
∗t hIR(t) (5.8)

This means we can determine the convolution of the time derivative of the illumination
profile with the transducer impulse response from this measured photoacoustic point
source response, by rearranging the equation:

∂I(t)

∂t
∗t hIR(t) =

4π‖r− rp‖Cp

β
p̃δ
(

r, t− 1
c
‖r− rp‖

)

(5.9)

The measured pressure wave p̃(r, t) of an optical absorption source A(r) can thus be
expressed as a function of the measured photoacoustic point source response:

p̃(r, t) = ‖r− rp‖ ×
(

1

t

∫ ∫

‖r−r′‖=ct

A(r′)dr′
)

∗t p̃δ(r, t′) (5.10)

with t′ = t− 1
c
‖r− rp‖.
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In our PER-PAT setup we use sliced light illumination of the object, resulting in
a plane of illumination. The detector elements are all positioned in this plane and
are surrounding the object. Furthermore, the sensitivity of the detector elements in
the elevation (z) direction is restricted to this plane of illumination. Therefore we
only have to take into account the contributions from the source distribution A(r) in
the plane of illumination, so that from now on the positions r =

(

rx, ry) are 2-d and
indicate a position in the plane of illumination. The two dimensional integral over a
spherical shaped surface can then be replaced by a one dimensional integral over a
circular shaped contour:

p̃(r, t) = ‖r− rp‖ ×
(

1

t

∫

‖r−r′‖=ct

A(r′)dr′
)

∗t p̃δ(r, t′) (5.11)

This model will be the basis of our reconstruction approach which we present in the
next section.

5.2.2 Calculating the photoacoustic projection integral

The source distribution A(r) is a continuous distribution of compact support. To
make the inverse problem feasible, we will represent this source distribution using a
limited number of degrees of freedom (pixels). Each pixel will be associated with a
value xi,j and is linked to a 2-d basis function h(r) at a shifted spatial location ri,j ,
so that the source distribution can be calculated as:

A(r) =
∑

i,j

xi,jh(r− ri,j) (5.12)

The 2-d basis functions are typically of compact support and should make it possible
to represent smooth (i.e. bandlimited) source distributions. We will come back to
what basis functions are suitable for the representation of the source distributions
later.

Evaluation of the projection integral

Evaluating the projection integral comes down to summing the contributions of each
of the basis functions. Substituting the representation of our source distribution A(r)
in terms of basis functions (5.12) in the projection integral results in:

∫

‖rd−r′‖=ct

A(r′)dr′ =

∫

‖rd−r′‖=ct

∑

i,j

xi,jh(r
′ − ri,j)dr

′ (5.13)

=
∑

i,j

xi,j

∫

‖rd−r′‖=ct

h(r′ − ri,j)dr
′ (5.14)

where rd represents the detector position. We see that the integration can be per-
formed independently of all the shifted basis functions and the result of all integrations
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r

A(r)

ct

Figure 5.1 Illustration of the circular projection integral over the optical absorption
distribution A(r). The detector position is indicated with r. The source distribution
is represented on a grid, each of the grid points is coupled to a basis function and a
value xi,j .

simply has to be summed. An overview of the projection integral geometry is dis-
played in Figure 5.1. The projection integral is defined over curved paths through the
basis function. However, on the scale of a single basis function, this curved path can
be approximated as a linear path, which simplifies the actual calculation of the inte-
gral. This approximation holds when the distance from detector to a pixel, ‖rd−ri,j‖,
is large compared to the scale of a basis function ∆x, i.e. when ‖rd − ri,j‖ ≫ ∆x.
For example, when the closest distance of the detector to the object is 1 cm and the
scale of a single basis function is set to 100 µm, then the deviation of the curved path
from a straight line is at most 0.125 µm in the area of one pixel, showing that it is
justified to make this approximation.

Going to a pixel centered coordinate system and applying the approximation of a
projection line instead of a projection curve gives us:

∫

‖rd−r′‖=ct

h(r′ − ri,j)dr
′ =

∫

‖rd−ri,j−r′‖=ct

h(r′)dr′ ≈
∫

‖rd−ri,j‖+rTϕr′=ct

h(r′)dr′ (5.15)

where rϕ =
ri,j−rd

‖ri,j−rd‖ is the unit vector pointing from the detector position to the

pixel position. To clarify this, the projection line together with the geometry around
the pixel xi,j is displayed in Figure 5.2a. If we rotate the basis function so that it
aligns with the rotated coordinate system, as shown in Figure 5.2b, and refer to the
rotated basis function as hϕ(r) we get for the evaluation of the integral of each basis
function:

∫

‖rd−ri,j‖+rTϕr′=ct

h(r′)dr′ =

∞
∫

−∞

hϕ(ct− ‖rd − ri,j‖, β)dβ (5.16)

Thus finally, using rotated basis function hϕ(r) and linearization of the integral path,
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Figure 5.2 Geometry of the projection line with respect to the coordinate system
defined around a single pixel xi,j positioned at ri,j .

we can write the projection as:

∫

‖rd−r′‖=ct

A(r′)dr′ ≈
∑

i,j

xi,j

∞
∫

−∞

hϕ(ct− ‖rd − ri,j‖, β)dβ (5.17)

Rotation invariant basis functions

An interesting thing to further investigate is the situation of having a rotation invari-
ant basis function. Such a basis function can be fully described from only its radial
profile hr(r) using h(r) = hr(‖r‖). The required line integral is then independent of
the orientation ϕ of the kernel and can be calculated from the radial profile using:

ht(t) =

∞
∫

−∞

hr(
√

(ct)2 + x2)dx = 2

∞
∫

0

hr(
√

(ct)2 + x2)dx (5.18)

The required integration over the radial profile function hr(r) is an integral transform,
also known as the Abel Transform, see Appendix E.4. By substituting t′ = ct, such
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that ht(t) = ht′(ct), we can express this transform as:

ht′(t
′) = 2πF−1H0

{

hr(r)
}

(5.19)

and its inverse as:

hr(r) =
1

2π
H−1

0 F
{

ht′(t
′)
}

(5.20)

where F is the Fourier transform and H0 the zeroth order Hankel transform, see
Appendix E.4. The resulting time domain kernel function ht(t) is symmetric in its
origin. Thus, using a rotation invariant basis function, calculating the projection
integral comes down to a simple convolution in the time domain:

∫

‖rd−r′‖=ct

A(r′)dr′ ≈
∑

i,j

xi,jht(t− 1
c
‖rd − ri,j‖) (5.21)

= ht(t) ∗





∑

i,j

xi,jδ(t− 1
c
‖rd − ri,j‖)



 (5.22)

where the approximation again stems from the fact that we approximate the curved
projection paths with linear projection paths. This is a very nice observation and it
gives us insight in how to interpret different ways to calculate the projection integral
in terms of the implicitly underlying basis function representation. Basically, this
result already hints in the direction of an efficient pixel driven way to calculate the
photoacoustic projection integral.

Simple pixel based calculation of the integral

Using the results of the previous section, we can give a meaning to simple pixel based
methods to numerically calculate the photoacoustic projection integral. The simple
schemes that we discuss here are based on calculating a time of flight for each pixel.
Each time of flight value can be mapped to a certain location in the sampled time
domain signal as shown in Figure 5.3. Due to the fact that the time domain signal
is sampled, we have to use some form of interpolation to project the pixel value
onto the sampled time domain signal. The most simple interpolation method is to
just round the time of flight to the nearest sample, this method is called nearest
neighbor interpolation (Figure 5.3a). A slightly better method would be to use linear
interpolation to distribute the pixel value over the two nearest samples (Figure 5.3b)
and an even better method would be to use cubic interpolation to distribute the value
over the four nearest samples (Figure 5.3c). We will now see what the implications
are when using such simple interpolation techniques to evaluate the photoacoustic
projection integral.

Choosing a certain interpolation in the time domain can be related to the choice
of a spatial basis function to represent the source distribution. The relation between
these two is given by the Abel Transform as discussed in the subsection on rota-
tion invariant basis function. Using (5.20) we can calculate the radial profile of the
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Figure 5.3 Calculation of the projection of a single pixel using a simple time domain
interpolation scheme: (a) nearest neighbor interpolation, (b) linear interpolation and
(c) cubic interpolation. The pixel is positioned at rij and the detector is positioned
at rd resulting in a time of flight t = 1

c
‖rij −rd‖. The sampling frequency in the time

domain is given by fs.

corresponding spatial basis function for a certain interpolation method based on the
convolution kernel that is used in that interpolation method. The convolution kernels
for the chosen time domain interpolation methods are displayed in Table 5.1. The
corresponding spatial basis functions that implicitly belong to these time domain in-
terpolation kernels, numerically calculated using (5.20), are displayed in Figure 5.4.
For convenience, in this figure we have displayed the temporal and spatial functions
on the same scale, this can be done when the sampling in both domains is equal. In
general, the relation between spatial and temporal grid spacing is determined by the
sound speed and given by ∆r = c∆t. From Figure 5.4a we see that using nearest
neighbor interpolation to calculate the projection integral results in a valley shaped
spatial basis function with very steep edges. This is an interesting result and it shows
that nearest neighbor interpolation leads to a spatial basis function that will fail to
properly represent smooth source distributions. Also in case of the linear interpola-
tion, Figure 5.4b, we see a spikey function which will also fail to properly represent
smooth source distributions. Finally in the case of the cubic interpolation scheme,
Figure 5.4c, we see a basis function which is capable of representing smooth source
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Method Interpolation kernel

Nearest neighbor ht(t) =

{

1 |t| < 1
2

0 otherwise

Linear ht(t) =

{

1− |t| |t| < 1

0 otherwise

Cubic ht(t) =















3
2 |t|3 − 5

2 |t|2 + 1 |t| < 1

− 1
2 |t|3 + 5

2 |t|2 − 4|t|+ 2 1 < |t| < 2

0 otherwise

Table 5.1 Interpolation methods and corresponding convolution kernels, when the
spacing between time points is set to ∆t = 1

distributions. From this we can conclude, that when using these simple interpolation
methods on its own to calculate the projection integeral, only the cubic interpolation
scheme is a good choice. This conclusion however is only valid when the grid spacing
in both the time domain and spatial domain are matched. The reason for this will be
explained in the next paragraph.

Suppose the time domain measurements are sampled with a sampling frequency
of fs, then when using one of the simple time domain interpolation schemes the
grid spacing in the spatial domain should be in the order of ∆r = c

fs
. When the

grid spacing is larger, ∆r > c
fs
, thus the spatial resolution is lower, the resulting

spatial basis function is not able to cover the complete spatial domain and gaps will
appear in between the pixels. This will have an aliasing effect, the higher temporal
frequencies will alias back into the spatial domain. When the grid spacing is made
smaller ∆r < c

fs
, thus the spatial resolution is made higher, the resulting spatial basis

function will start to overlap too much with its neighbors. This will have the effect of
making the inverse problem more ill-conditioned. Due to the smoothing effect of the
wider spatial basis functions there will be more sets of solutions resulting in the same
(after applying the basis function) representations of the source distribution, i.e. the
high frequencies of the pixel map will lie in the null space of the transformation.

Pixel based calculation of the integral using time domain convolution

Any time domain kernel function ht(t) can be chosen to evaluate the photoacoustic
projection integral, each with its own implicitly corresponding spatial basis function
hr(r). We have seen in the previous section what simple time domain kernels, based
on an interpolating function, will do in terms of their corresponding basis functions. A
limitation when using these interpolating basis functions alone is that the scale of the
time spacing in the raw measurements should match the scale of the grid spacing in
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Figure 5.4 The effect of using a simple interpolation schemes in the time domain
on the corresponding (implicitly assumed) spatial radial basis function hr(r). The
spacing in the time domain was set to ∆t = 1 and the speed of sound set to c = 1

the spatial domain. In a reconstruction problem like photoacoustic imaging, generally
the grid spacing in the spatial domain will be wider, i.e. the resolution lower, than
the matching time domain spacing. The reason for that is to limit the number of
unknown pixels in the system of equations and has also to do with the bandwidth
of the measuring transducer which does not allow for such high matching resolution
reconstructions. For an arbitrary kernel function ht(t) still the approach sketched in
Figure 5.3, but now using the wider kernel function ht(t) to sample from instead, can
be used to calculate the necessary projection. However, with increasing kernel size it
becomes less attractive do so in terms of computational efficiency. For wider kernels, a
better method would be a two-step approach. First use one of the small interpolating
functions to calculate the footprint of a certain pixel xi,j to a time position t and to
splat and sample this smaller interpolating kernel on the time axis, as also shown in
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Figure 5.3. Then in a next step, a simple convolution operation on the sampled time
domain signal with the arbitrary kernel function ht(t), will give the aimed for result.
Thus splatting and sampling of a wide kernel ht(t), i.e. discretizing the photoacoustic
integral (5.21), can be approximated by splatting and sampling of a small interpolating
kernel and convolving the result with the wider kernel ht(t). The convolution step
can be implemented using FFT operations, resulting in a computationally efficient
scheme.

The complete algorithms to calculate forward and backward projections of the
discretized integral (5.21) are outlined in Figures 5.5 and 5.6 respectively. In these
algorithms it is assumed that the source distribution A(r) is represented on a grid of
pixels xi,j and the projections are represented as a set of vectors zd containing the
time domain projection for a certain detector element. In the algorithms, a vector p
is calculated which contains the coefficients resulting from interpolation of the time of
flight t over the ncoeff neighboring time grid points. For nearest neighbor interpolation
ncoeff = 1, for linear interpolation ncoeff = 2 and for cubic interpolation ncoeff = 4.

It is also possible to construct a sparse matrix once, which can then be used to
calculate the necessary projections and back projections. In compressed column stor-
age format, using 64 bits floating point coefficients and 64 bits integer representation
(64 bits architecture), such a sparse matrix would occupy 16ncoeffninjnd + 8ninj

bytes of memory, where ni and nj are the dimensions of the source image, nd are the
number of detector positions and ncoeff is the number of coefficients necessary for the
interpolation method. For example, an image of dimensions 300×300 with 90 projec-
tions and using linear interpolation would result in a sparse matrix that occupies 247
Megabytes of memory. Depending on the dimensions of the image and the number
of projections it can be advantageous to represent the projection as a sparse matrix,
since forward and backward projections can be calculated faster in that case.

Algorithm Forward photoacoustic projection integral

1. For all detector element positions rd in the measurement configuration
2. For all pixels (i, j) in the source distribution image A(r)
3. Calculate the time of flight t = ‖ri,j − rd‖
4. Calculate interpolation coefficients p at neighboring time points of t
5. Increase the measurement of each of the neighboring time points tk

with corresponding coefficient pk to zd,tk = zd,tk + pk × xi,j

6. End for
7. Calculate convolution of ht(t) with zd(t) using the FFT operation
8. End for

Figure 5.5 The algorithm to calculate the forward photoacoustic projection integral
for wide kernels ht(t) using convolutions (implemented with FFTs).
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Algorithm Backward (transposed) photoacoustic projection integral

1. For all detector element positions rd in the measurement configuration
2. Calculate convolution of ht(−t) with zd(t) using the FFT operation
3. For all pixels (i, j) in the source distribution image A(r)
4. Calculate the time of flight t = ‖ri,j − rd‖
5. Calculate interpolation coefficients p at neighboring time points of t
6. Increase the pixel value xi,j by summing contributions from each of the

neighboring time points tk with corresponding coefficient pk:
xi,j = xi,j + pk × zd,tk

7. End for
8. End for

Figure 5.6 The algorithm to calculate the backward photoacoustic projection in-
tegral for wide kernels ht(t) using convolutions (implemented with FFTs).

5.2.3 Basis function realizations

We will discuss two possibilities for the rotation invariant spatial basis function h(r).
Requirements for these basis functions are that they have to be of limited spatial
support and that they should allow smooth distributions to be represented. We have
chosen two different basis functions that have this property. The first one is based
on the Gaussian kernel and the second one is based on the Butterworth kernel. The
Fourier transforms of the selected kernels, H(ω) = F

{

ht(t)
}

, are displayed in Table
5.2. Both functions are defined for a certain scale, the Gaussian scale is controlled

Name Fourier transform of kernel H(ω) Scale parameter

Gaussian exp

[

− 1
2

(

ω
σω

)2
]

σω =
c

0.6∆x

Butterworth
1

1 +
(

ω
ωc

)2n ωc = 2π
0.45∆x

c

Table 5.2 Fourier transforms of the kernels belonging to the spatial basis functions
used in this study to rerpesent the source distribtuion A(r). The scale parameter,
related to the grid spacing ∆x and speed of sound c is also shown.

with the σω parameter and the Butterworth scale is controlled by its cut-off frequency
ωc. Furthermore the steepness of the Butterworth kernel can be specified by its order
n. A suitable order for the Butterworth kernel was experimentally determined to be
n = 6. The scales should be such that they occupy the grid-size of one pixel. The
scales that we used are displayed in the last row of Table 5.2. The scale parameters
are chosen so that the cut-off frequency of the kernel is very close, and just below,
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the Nyquist frequency belonging to the spatial grid spacing. In volume rendering, we
have seen[62] the Gaussian kernel being used in a splatting and convolution process
with a similar scale as we use. The selection of a basis function is not very crucial for
image reconstruction, the chosen Gaussian and Butterworth kernels are an example
to show how this works in practice and can easily replaced by other kernels.

The radial profile hr(r) of the resulting spatial basis function can be calculated
from H(ω) via a zeroth order Hankel transform, as shown in (5.20). For the two
chosen kernels, these basis functions are displayed in Figure 5.7.
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Figure 5.7 Spatial basis functions shown on the size of the spatial grid spacing

5.2.4 Solving the image reconstruction problem

Having set the forward model that from a known source distribution A(r), represented
by a parameter vector x according to (5.12), it is now time to discuss strategies to solve
the inverse problem. As we have seen, the forward model consists of several steps,
which are all linear. From source distribution coefficients x to sampled ultrasound
measurements z there are three linear operations that take place, as can be seen in
Figure 5.8. The forward model can be compactly written in a linear equation with a

x
Photoacoustic

projection integral

Division

by t

Division

by t

Detector

impulse response
z

∫

‖rd−r′‖=ct

A(r
′
)dr

′ × 1

t
∗ p̃δ(rd, t

′
)

Hint Ht Himp

Figure 5.8 The three linear operations present in the forward model for photoa-
coustic signal generation
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single linear operator H that represents the complete chain of linear operations:

Hx = z (5.23)

The linear operator can thus be seen as the concatenation of three operators H =
HimpHtHint. Finding the unknown source distribution coefficient x from a set of sam-
pled ultrasound measurements z comes down to solving the system of linear equations.
The least squares solution to this system is given by:

x̂LS =
(

HTH
)−1

HT z (5.24)

A stable solution to this least squares problem requires the term HTH to be well
conditioned, since its inverse is required in the solution x̂LS. If the operator H is not
well conditioned, regularization, i.e., prior assumptions on the solution x, have to be
included to make the problem solvable.

Filtered back projection

A popular technique to solve the reconstruction problem is called filtered back pro-
jection (FBP)[6]. It has its roots in x-ray CT imaging, in which a similar linear
projection problem has to be solved[63, 64]. In parallel-ray CT imaging, a Radon
transform, see Appendix E, describes the forward projection. To solve the CT inverse
problem, an expression for the inverse Radon transform is required. This expression
can be found analytically[63] and can be written as the concatenation of a filtering
step Hfilt and a back projection step, HT

CT, of the measured CT projections zCT:

ˆxCT = HT
CTHfiltzCT (5.25)

The filtering operation represents a ramp filter in the time (projection) domain,
H(ω) = |ω|. Applying a back projection without filtering with this ramp filter results
in a blurred reconstruction. This blurring can be described by a convolution of the
true image with a point spread function (PSF) of 1√

x2+y2
, as shown in Appendix

E. Ramp filtering in the time domain is equivalent to deconvolving the blurred im-
age with the PSF. This equivalence, however, is an analytical result without taking
sampling and noise into account.

Kruger proposed a, similar to parallel beam x-ray CT, FBP algorithm for PA
imaging[6, 20]. The idea is to first pre-process the measured ultrasound signals z, so
that we effectively step back two blocks in Figure 5.8, resulting in a pre-processed
measurement zpre. This pre-processing step typically consists of an integration step,
when p̃(rd, t

′) is considered as a derivative operator, and a multiplication step. Or it
consists of a deconvolution step and a multiplication step[61]. Effectively, according to
(5.6) and (5.10), when p̃(rd, t

′) is considered to be a derivative operator, the transfer
of the ultrasound transducer is implicitly assumed to be very flat and wide band and
the laser pulse very short. The pre-processing step can be written as:

zpre = H−1
t Hdeconvz (5.26)



5.2. Photoacoustic image reconstruction 141

Then what remains is the photoacoustic projection integral, Hint, which has to be
inverted. Here comes the analogy with x-ray parallel beam CT imaging into play. A
filtering (with the ramp filter) and a back projection are used to obtain the final FBP
reconstruction:

x̂FBP = HT
intHfiltzpre (5.27)

This is a very fast, but approximate solution to the photoacoustic reconstruction
problem. In the next section we will look at other ways to more accurately solve the
reconstruction problem.

Iterative reconstruction methods

Besides doing a one-step FBP operation to reconstruct the source distribution, an-
other approach for PA image reconstruction is to solve the linear system of equations.
The linear operator, H, involved in (5.23), is quite large. If for example an image size
of 300 × 300 would be used, the number of rows in the operator would be 90,000. To
solve such a large system of equations, iterative methods are needed. Methods that
have been used in photoacoustic image reconstruction to solve the linear system are
the Conjugate Gradient algorithm applied to the normal equations (CGNR)[65] and
the LSQR[54] algorithm. Both these algorithms are Krylov subspace methods[66] and
similar results, apart from numerical rounding errors, can be obtained.

In (5.25), we have assumed that we want to estimate the least squares solution to
the linear system of equations in (5.23). This solution coincides with the maximum
likelihood solution, when additive uncorrelated Gaussian noise on the measurements
is assumed[67]. This is a good assumption for the noise which is seen on the mea-
sured ultrasound signals, because the main source of noise is electronic noise from the
transducer, with no correlation between any two measurement samples[67].

Before we start, let us see what solution is actually calculated when using an
iterative, Krylov subspace based method, such as CGNR or LSQR, to solve the linear
system of equations. This solution depends on the number of iterations used and is
given by:

x̂(j) = argmin
x∈Kj(HTH,HT z)

‖Hx− z‖2 (5.28)

where the Krylov space at the jth iteration is given by:

Kj(H
TH,HT z) = span

{

HT z,
(

HTH
)

HT z, . . . ,
(

HTH
)j−1

HT z
}

(5.29)

Thus a constrained solution to the least squares problems is found in every iteration
of a Krylov subspace method, where the constraint is such that the solution in the
jth iteration is be contained in the associated jth Krylov subspace. This implicitly
provides a form of regularization to the solution by terminating the iterative method
at a low number of iterations. The solutions tend to start off with low frequency
content and the reconstructions get more and more high frequency contents as the
iteration number increases. For example, the solution that is obtained after the first
iterarion is the one that is obtained by simple back projection, i.e., x̂(1) ∝ HT z, which
is a very blurred reconstruction.
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Implementation of the linear operators

Solving the linear system (5.23) using a Krylov based subspace method requires the
evaluation of the linear operator H in forward and backward (transposed) mode, i.e.,
calculating Hx for any given x and calculating HT z for any given z. As we have seen
before, this operator is the concatenation of three linear operators. We will discuss
efficient forward and backward evaluation of each of the three operators here.

The first operator, Hint, has been discussed in section 5.2.2. An efficient algorithm
to calculate the forward transform is displayed in Figure 5.5 and a similar algorithm
to calculate the backward transform in Figure 5.6. The other two operators are square
(same input and output dimensions) and operate on the time domain. The vector
z represents the time domain signals in a single vector by vertically stacking the
individual time domain measurements from the individual transducers.

The second operator Ht is a simple operator that results in an output vector which
is obtained by element-wise division of the input vector with the time axis value that
belongs to each of the elements of the input vector. This operator is diagonal, thus
forward and backward mode are the same here.

The third operator Himp applies the impulse response p̃δ(rd, t
′) to each of the time

domain measurements from the individual transducers present in the input vector.
This is efficiently obtained by calculating the FFT of a sampled representation of
p̃δ(rd, t

′) and multiplying this with the FFT of each of the subvectors in the input
vector. Then for each of the subvectors the IFFT is calculated. The backward oper-
ator HT

imp is slightly different in the sense that the complex conjugate of the FFT of
p̃δ(rd, t

′) needs to be taken.

Preconditioning

Sometimes, due to the conditioning of the linear operator H, solving the linear system
with an iterative method may need a high number of iterations before convergence
is obtained. A preconditioner matrix is often used to make the linear system better
conditioned and subsequently improve the convergence rate of the iterative method.
In our reconstruction problem, preconditioning can be applied to the normal equations
associated with it. The normal equations are obtained by equating the gradient of
the least squares formulation to zero, resulting in:

HTHx = HT z (5.30)

By preconditioning the system with a preconditioning matrix M, the original linear
system can be transformed to a system with the same solution, but which is likely
to be easier to solve with an iterative solver [66]. The preconditioning matrix has to
be chosen such that it is an approximation to HTH, it should be nonsingular and
the inverse should be readily available. This preconditioning matrix can be applied
in several ways to transform the original system, such as left, right and split precon-
ditioning. We have chosen for a split preconditioner, because it can be easily applied
to the LSQR algorithm that we use to solve the linear system. In a split precondi-
tioner, the preconditioner in split into M1 and M2 such that M−1 = M−1

1 M−1
2 and
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in our case, to apply it to the LSQR algorithm, we have that M1 = M2. The split
preconditioned linear system is then given by:

HM−1
1 y = z (5.31)

which will be solved for y and the solution is obtained from x = M−1
1 y.

The question now is, what is a good preconditioner for the photoacoustic image
reconstruction problem. This part heavily depends on the fact that for a photoa-
coustic projection, convolution operations in the time domain and spatial domain are
related, as can be seen from (5.19) and (5.20). Our preconditioner M should be an
approximation of:

HTH = HT
intH

T
t H

T
impHimpHtHint (5.32)

The matrix Ht is a diagonal matrix, which is very well conditioned, its condition
number can be seen as the ratio between the time of flight of the last measurement
sample of interest tmax and the first measurement sample of interest tmin. Therefore
we ignore this matrix in our approximation of HTH. We are then left with the
product HT

impHimp, which actually represents the convolution p̃δ(rd,−t) ∗t p̃δ(rd, t).
This convolution in the time domain, can be moved over to the spatial domain where
the equivalent effect can be applied by convolution with a 2-d radially symmetric
kernel. The transformation from time to spatial domain is given by the inverse Abel
transform and has been shown in the previous section in (5.20). As mentioned before,
this relation is an approximation which is valid for kernels which have small spatial
support. This approximation is good enough for our preconditioner which is only
supposed to approximate the behavior ofHTH in some sense. Moving the convolution
from time to spatial domain leaves us with the following form of the matrix:

HT
intH

T
impHimpHint ≈ HT

intHintHimp2,sp (5.33)

where Himp2,sp represents the 2-d spatial convolution operation with a PSF of the
radially symmetric kernel obtained from the inverse Abel transform of p̃δ(rd,−t) ∗t
p̃δ(rd, t). What we are left now with is the HT

intHint term, representing the chain of
applying the forward then the backward photoacoustic projection integral. The pho-
toacoustic projection integral can approximately be seen as a Radon transform. This
mean we can approximate the operation by a forward and backward radon transform.
In Appendix E we show that this comes down to a 2-d spatial convolution with a PSF
of 2

r
. A similar approach was performed in x-ray CT image reconstruction[68] where

a spatial PSF was numerically calculated and its inverse used as a preconditioner.
Representing this spatial convolution with the operator Hr, would then give us the
following preconditioner:

M = HrHimp2,sp (5.34)

which is the spatial convolution of two, radially symmetric, PSFs. Now in order for
M to be a good preconditioner, the last requirement is that it is nonsingular. The
preconditioner can easily be changed to be nonsingular by enforcing it with a certain
condition number κ, which can be accomplished by limiting the lowest eigenvalues
to have a value of at least κσmax. Because the preconditioner represents the spatial
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convolution of a radially symmetric PSF and because it will be well conditioned,
the preconditioner is symmetric positive definite. In the end we work with the split
preconditioner M−1

1 which can be derived from M by square rooting and inverting
its eigenvalues, i.e., M = M1M1.

The practical implementation of the proposed split preconditioner M−1
1 is very

simple, and the actual matrix never needs to be formed explicitly. In matrix form,
it would have been a block-circulant matrix consisting of blocks which are circulant
matrices[69] also called BCCB matrices[70]. We can efficiently apply the operator
M−1

1 using a 2-d FFT and 2-d IFFT operation. The input image has to be transformed
to the FFT domain, then a multiplication with a kernel representing M−1

1 is applied
and the result is transformed back to the image domain via an IFFT operation. Now
we come to the representation of M−1

1 in the 2-d FFT domain. A radially symmetric
PSF is a real and even function, which has a real and even Fourier transform[71].
It turns out that the (real) coefficients of the 2-d Fourier transform represent the
eigenvalues of the underlying BCCB matrix[70]. The radial FFT profile belonging
to the forward/backward radon transform, Hr, can be obained by an inverse Hankel
transform according to (5.20), of the radial profile of the 2-d spatial kernel 2

r
which

is given by 2
k
[72]. The radial FFT profile of the forward/backward impulse response,

Himp2,sp, can be obtained by a Fourier transform of the time domain kernel according
to (5.20). Our time domain kernel is obtained by forward and backward applying
the impulse response p̃δ(rd, t), which results in a real valued Fourier transform of
∣

∣F
{

p̃δ(rd, t)
}∣

∣

2
. The unconditioned eigenvalues, and FFT coefficients, of M would

then be given by:

σuc(ω) =
2
∣

∣F
{

p̃δ(rd, t)
}∣

∣

2

|ω| (5.35)

To make M well conditioned with condition number κ, we have to add a small value
of β = 1

κ
max

(

σuc(ω)
)

to all eigenvalues σuc(ω). Now inverting and square rooting
the eigenvalues, we find the radial FFT profile of the well conditioned inverse of our
split preconditioner M−1

1 :

σ(ω) =

√

|ω|
√

2
∣

∣F
{

p̃δ(rd, t)
}∣

∣

2
+ β|ω|

(5.36)

This guarantees that the condition number of M−1
1 is at most

√
κ, but can be lower

when the unmodified preconditioner already had a better condition number. Note
that this is a continuous specification of the Fourier coefficients, the spatial sampling
frequency and image size have to be taken into account to properly calculate the eigen
values/FFT coefficients.

Data space preconditioning The above described preconditioning works on the
object space, in the spatial domain, and as such it does not change the least squares
solution that is being calculated in (5.24). Preconditioning can also be performed on
the data space, or time domain, which, however, does change the value and meaning



5.2. Photoacoustic image reconstruction 145

of the obtained solution[67]. We will come back to this later. If we take the precondi-
tioner M−1

1 with the earlier discussed eigenvalues and Fourier coefficients (5.36), it is
easy to convert this preconditioner to the time domain. Let us call the time domain

preconditioner M̃
−1

1 . The Fourier coefficients which used to reside on radial profiles
through the 2-d FFT description of M−1

1 can then be seen as 1-d FFT coefficients
which have to be applied to the time domain signals. Also here the time domain
sampling frequency and sample length have to be taken propertly into account. So
instead of the preconditioner being a 2-d spatial PSF, as was the case for M−1

1 , the
data space preconditioner is a 1-d convolution kernel that operates on the time do-

main signals. If we refer to the time domain, or data space, preconditioner as M̃
−1

1

then the data space preconditioned system of equations is given by:

M̃
−1

1 Hx = M̃
−1

1 z (5.37)

The preconditioner, if explicitly formed as a matrix, would be the horizontal concate-
nation of a number of circulant matrices. The condition number of the data space

preconditioner M̃
−1

1 can be higher than the object space preconditioner M−1
1 , be-

cause in general the sampling frequency in the spatial domain is lower than in the
time domain. The condition number is however still bounded by

√
κ as shown in

(5.36).
Solving the data space preconditioned system is equivalent to minimizing:

x̂ = argmin
x

‖M̃−1

1 Hx− M̃
−1

1 z‖2 (5.38)

= argmin
x

(

Hx− z
)T

M̃
−1(

Hx− z
)

(5.39)

where M̃
−1

= M̃
−1

1 M̃
−1

1 . This is equivalent to assuming a covariance matrix of M̃
on the data z, and calculating the maximum likelihood solution for this assumed
noise distribution. In reality however, the noise on z is considered to be white with
a diagonal covariance matrix, thus a different solution is expected to be calculated
when using the data space preconditioner then with the object space preconditioner
or when no preconditioner is present.

Regularization

As seen in (5.24), calculating the least squares solution to the linear system involves

the inversion given by
(

HTH
)−1

. When the projection H is ill-conditioned the inver-
sion can be undefined, because a part of the singular values can be zero or close to zero.
To solve this problem regularization is needed to stabilize this inversion, which means
prior information about the solution x has to be added to the problem[73]. We will
show three different regularization methods than can be applied to the reconstruction
problem.

Tikhonov A well-known regularization scheme is Tikhonov regularization, where the
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following solution is calculated:

x̂Tik = argmin
x

‖Hx‖2 + λ‖Lx‖2 (5.40)

here L is an operator typically representing a high-pass filter which penalizes the
high frequencies in the solution more than the low frequencies. The parameter λ
controls the smoothness of the solution. The Tikhonov regularized solution can
be seen in a statistical framework as the maximal a posteriori (MAP) estimate
where LTL is the inverse of the covariance matrix of the prior information on
the solution and λ balances the variances of the measurement noise and the prior
information. An optimal choice for the λ parameter can be found by looking at
the L-curve associated with the regularization. The L-curve is obtained[56] by
plotting the regularized norm ‖Lx‖ against the residual norm ‖Hx‖ on a double
logarithmic scale. The L-curve is shaped like the letter L and the optimal value
for λ is found in the corner of the L-curve.

Total variation When using Tikhonov regularization, an L2 norm, i.e., a quadratic
criterion, is used to penalize the high frequencies in the solution. In image
reconstruction it makes more sense to use a regularizer based on an L1 norm[74]
which instead of having only a smoothing effect has also an edge preserving
effect. This kind of regularization is sometimes called Total Variation (TV)
when the magnitude of the gradient is the quantity being regularized. The total
variation regularized solution is then calculated from

x̂TV = argmin
x

‖Hx‖2 + λTV(x) (5.41)

where TV(x) =
∑

i

√

(∂xxi)2 + (∂yxi)2 + β2. Adding the constant β > 0 of-
fers computational advantages, such as differentiability when the gradient ap-
proaches zero[55]. Effectively the β constant allows a smooth transition from a
quadratic, L2 cost function, for small gradients to a linear, L1 cost function for
large gradients. The transition point is found around

√

(∂xxi)2 + (∂yxi)2 = β.

Krylov-subspace iteration number Another kind of regularization can be ob-
tained by constraining the solution to lie in a lower dimensional subspace[56]
S:

x̂Constr = argmin
x∈S

‖Hx‖2 (5.42)

this is effectively what happens when a Krylov-subspace method is used such
as CGNR and LSQR. The solution space is then governed by the iteration
number j and the associated Krylov subspace, i.e., S = Kj

(

HTH, HT z
)

. When
preconditioning with a preconditioner M is used, the associated Krylov space
in which the solution is contrained to lie will also change according to S =
Kj

(

M−1HTH, M−1HT z
)

, which means that the regularizing properties of an
iterative algorithm are also related to the chosen preconditioner. And finally,
preconditioning in the data space results in yet another Krylov space, which is

given by S = Kj

(

HTM̃
−1

H, HTM̃
−1

z
)

.
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5.2.5 Results

In this section we discuss the algorithms presented above.

The photoacoustic impulse response

Before we can use our methods, we need to have a description of the photoacoustic
impulse response p̃(rd, t). In the calibration measurement, a measurement is taken of
a calibration phantom consisting of several thin hairs (75 µm). The signal generated
by such a hair can be seen as the signal coming from a photoacoustic point source.
By aligning and averaging over all sensors for each individual hair, we can obtain
photoacoustic point source signals from each of the hairs. A typical signal that is
obtained from a hair in the calibration phantom is displayed in Figure 5.9a and the
corresponding spectrum is displayed in Figure 5.9b. Because measurement condi-
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Figure 5.9 Illustration of a measured photoacoustic impulse response p̃(rd, t). This
response was obtained by illuminating a small hair such as is being done in the
calibration measurement. The displayed signal is an average over all sensor elements.

tions can change over time, for every PER-PAT measurement that is performed this
photoacoustic impulse response is extracted again from the calibration measurement.

Preconditioner eigenvalues/Fourier coefficients

The preconditioners that are being used, M̃
−1

1 for data space preconditioning, and
M−1

1 for object space preconditioning, are dependent on the photoacoustic impulse
response. Both preconditioners consist of circulant matrices with eigenvalues de-
pendent on the sampling frequency and domain size, the actual eigenvalue/Fourier
coefficient distribution per frequency, valid for the photoacoustic impulse response
shown in Figure 5.9, is displayed in Figure 5.10a. Especially the low frequency eigen-
values are important for the preconditioners. Therefore we show the low frequency

filtered, cut-off frequency at around 7 MHz, convolution kernels belonging to M̃
−1

1
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(c) Spatial domain convolution kernel (radial
profile)

Figure 5.10 The top figure displays the eigenvalues/Fourier coefficients of the pre-

conditioners M̃
−1

1 (time domain/data space) and M−1
1 (spatial domain/object space).

The low frequency content is the crucial part of the preconditioner, therefore the low
pass content of the resulting convolution kernels are shown in (b) time domain and
(c) spatial domain. The domain scaling is relevant for a speed of sound of 1500 m/s,
i.e., 1.5 mm/µs.

and M−1
1 in Figures 5.10b and 5.10c. We see that the convolution kernels have a large

support. The support of the spatial kernel of around 10 mm is clearly far more then
what is considered to be small relative to the distances from object to the detector
elements. This means the approximation of the object space preconditioner M to
HTH will not be very accurate. This issue is not relevant for the data space precon-
ditioner, which, however, has another issue, being the fact that it not minimizes the
least squares residual but a differently weigted residual as was discussed before. In
the upcoming section we will investigate what effects this all has on the performance
of both preconditioners.
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Numerical evaluation

First a numerical experiment was conducted to investigate the reconstruction per-
formance of the algorithms with respect to a ground truth image. The numerical
phantom that was being used is displayed in Figure 5.11. It consists of several lines,
circles and a square. The dimensions and intensites of the labeled objects are dis-
played in Table 5.3. The small circles c2/c7 are chosen with increasing size so that
resolution effects can be studied. The square s1 and circle c1 have a larger size to see
how well larger objects can be reconstructed. The cross x1 was added to study the
reconstruction of line like structures.
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Figure 5.11 Numerical phantom used in this evaluation.

Name Size [mm] Intensity [a.u.]

x1 4.0 × 0.2 1.0
s1 8.0 0.8
c1 6.0 0.5
c2 0.1 1.0
c3 0.2 1.0
c4 0.4 1.0
c5 0.6 1.0
c6 0.8 1.0
c7 1.0 1.0

Table 5.3 Overview of the objects in the numerical phantom. The dimensions of
the cross preserent the length of the line times its thickness. The dimensions of the
circles represent their diameters.

A photoacoustic measurement was performed by numerical evaluation of the for-
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ward model, including the photoacoustic impulse response, at a high resolution. The
grid spacing in the generation of these measurements was set to 10 µm. The sampling
frequency in the time domain was set to 80 MHz, which is the frequency that is being
used in our PER-PAT setup. Gaussian white noise, with a standard deviation of 5%
of the maximum signal intensity was added to the measurements. The measurements
were taken by positioning virtual detector elements, conform the 32 element circu-
lar array, rotated over five steps to cover a complete projection of 360 degrees, thus
resulting in a set of 160 measurements roughly sampled over a circular trajectory
surrounding the object. The radius of this circular trajectory was set to 45 mm.

Filtered back projection We start by having a look at a widely used method
in photoacoustic image reconstruction, namely filtered back projection (FBP). This
is a very fast method and only requires a filtering and a back projection step. We
will test the FBP algorithm with and without taking the impulse response of the
transducer into account. When the transducer response is taken into account, de-
convolution is applied as pre-processing step and when not, integration of the raw
pressure measurements is instead performed. When the deconvolution was applied, a
proper deconvolution was carried out by regularizing the inversion. The results of the
FBP algorithm on the numerical measurements, with and without impulse response
taken into account are displayed in Figure 5.12. The obvious difference is that when
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(b) With impulse response, deconvolution in
pre-processing

Figure 5.12 Filtered back projection reconstruction results on the numerical optical
absorption phantom.

not taking the transducer impulse response into account only the very small objects
and the edges of the large objects can be reconstructed.

Iterative algorithms The FBP algorithm was only an approximate solution to
the reconstruction problem. With iterative algorithms we expect to get better image
quality because the actual least squares solutions to the linear system of equations
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will be calculated instead of an approximation. This, however, comes at the cost of a
computationally more demanding reconstruction algorithm.

We will start this section with the reconstruction performance of the linear system
without explicit, i.e., Tikhonov or Total Varation, regularization. Three approaches
were investigated here, the first one is without preconditioning, the second one is with
object space preconditioning and the last one is with data space preconditioning. For
every method, 400 iterations were calculated with the LSQR algorithm. The normal-

ized RMS residuals, 1√
Nzσz

‖Hx̂−z‖ and normalized RMSE of the solution, ‖x̂−xGT‖
‖xGT‖ ,

will be calculated at each iteration to evaluate the performance. A normalized RMS
residual of one means that the residual has the same size as the standard deviation
of the noise that was added to the measurements. A normalized RMSE of the so-
lution having a value of one is what would be obtained when an all zero solution is
assumed and a value of zero means the found solution is equal to the ground truth.
The results of this test are displayed in Figure 5.13. It can be seen that the residual
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(b) Image reconstruction convergence

Figure 5.13 Convergence plots of the not regularized system of equations..

quickly approaches a limiting value for all methods. This residual is even below the
expected value of one, which would correspond to a perfect fit with only noise left
on the residual signal. The normalized RMSE of the solution shows a similar trend
for all three methods, first it decreases after which is increases and rapidly expands.
This clearly indicates that the linear system that is being solved is ill-conditioned.
Also the regularizing property, which is obtained when terminating the iterative al-
gorithm at a low number of iterations, is obvious from these curves. The optimal
number of iterations would then correspond to the minimum of this curve. For the
non-preconditioned system, it takes a long time, about 160 iterations, before this
minimum is reached and the actual RMSE of this minimum is not very low when
comparing it to the other two methods. The object space preconditioned system con-
verges a lot faster, in about 33 iterations, then the non-preconditioned system and it
has a substantially lower RMSE. Finally, the data space preconditioned system con-
verges extremely fast in as little as five iterations, with a RMSE error similar to the
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object space preconditioned system. It also interesting to see that, although solving
the data space preconditioned system does not aim at minimizing the sum of squared
residuals, but a differently weighted residual, it still results in the same residual norm
as the other two methods. The RMSE of the FBP method is also shown in the figure
for comparison. Both iterative methods perform much better in terms of RMSE.

Besides the RMSE values it is interesting to look at the actual reconstructions
of the methods at the optimal number of iterations. These reconstructions are dis-
played in Figure 5.14. Both preconditioned reconstructions look very similar and the
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(d) Filtered back projection

Figure 5.14 Reconstructed images of the iterative methods when no explicit reg-
ularization is used. The iterations were terminated according to minimum in the
curves in Figure 5.13b. This means five iterations were used for the data space pre-
conditioned system (a), 33 iterations were used for the object space preconditioned
system (b), 160 iterations were used for the non-preconditioned system (c). The FBP
reconstruction (d) is shown as a reference.

differences are visually very difficult to see. The artifacts that are present in the FBP
reconstruction are heavily reduced in the preconditioned reconstructions. The non-
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preconditioned reconstruction shows a lot of high frequency noise which is caused by
the fact that the linear system is ill-conditioned. On the other hand, the self regular-
izing property of the iterative method, by limiting the number of iterations, seems to
work very well on both preconditioned reconstructions.

To improve the conditioning of the linear system, explicit regularization can be
used. We start off by using Tikhonov regularization, with an operator L that nu-
merically calculates a first order x and y derivative on a 2 × 2 stencil with forward
differences. A suitable value for the regularization parameter λ was found by trying
a range of values and choosing the value that gives the best balance between smooth-
ness and residual norm. It turned out that this value can quickly be found by trying
just a few values and that the outcome is not extremely sensitive to this value. The
convergence plots for the Tikhonov regularized system of equations are displayed in
Figure 5.15. In the data space preconditioned system we have thus effectively solved
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(b) Image reconstruction convergence

Figure 5.15 Convergence plots of the Tikhonov regularized system of equations.

the following regularized cost function:

x̂ = argmin
x

‖M̃1

(

Hx− z
)

‖2 + λ‖Lx‖2 (5.43)

and in the object space and non-preconditioned system:

x̂ = argmin
x

‖Hx− z‖2 + λ‖Lx‖2 (5.44)

With these regularized systems, convergence is obtained with data space precondi-
tioning after 10 iterations, with object space preconditioning after 40 iterations and
without preconditioning it takes more than 400 iterations to fully converge. The nor-
malized RMS residual is closer to one now which means the measurements are not
over-fitted as was the case without regularization where a normalized RMS residual
slightly lower then one was obtained. The reconstructed images that were obtained
with Tikhonov regularization are very similar to the earlier obtained images without
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regularization, by using only a limited number of iterations as displayed in Figures
5.14a and 5.14b.

Finally, the reconstruction with TV (L1 norm) regularization was investigated.
Because this regularization yields a nonlinear system of equations, several iterations
of different linearized system of equations are necessary to solve the problem. We used
an approach where first the L2 norm regularized solution is calculated and around
that solution the TV(x) term is linearized for every pixel. This linearization around
the newly obtained solution can be repeated until convergence is obtained. We found
out that only one extra iteration was necessary to obtain good results with L1 regu-
larization, which means that compared to the L2 norm regularization the amount of
time needed for reconstruction is only twice as much. The reconstructions obtained
with L1 norm regularization, however, are visually much better than the ones ob-
tained with L2 regularization. In the data space preconditioned system, the following
cost function is minimized:

x̂ = argmin
x

‖M̃1

(

Hx− z
)

‖2 + λTV
(

x
)

(5.45)

and in the object space and non-preconditioned system:

x̂ = argmin
x

‖Hx− z‖2 + λTV
(

x
)

(5.46)

The results of both approaches are displayed in Figure 5.16. Here we clearly see
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Figure 5.16 Reconstructed images of the iterative methods when TV regularization
is used. The iterations were terminated according to minimum in the curves in Figure
5.15b. This means 10 iterations were used for the data space preconditioned system
(a) and 50 iterations were used for the object space preconditioned system.

differences between the two approaches. Preconditioning in the data space, in which
a modified system of equations is solved, results in low frequency noise corrupting the
image, Figure 5.16a. This low frequency noise is not present in the reconstruction
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using the unmodified system of equations, Figure 5.16b. Thus when TV regularization
is used, improved image quality can be obtained when using the original system of
equations.

A summary of the reconstruction qualities of all reconstruction methods is dis-
played in Table 5.4. In this table the normalized RMSE is the quality indicator. A

Method # Iterations NRMSE

FBP 1 0.4222
Data space / No regularization 5 0.2585
Object space / No regularization 33 0.2541
Data space / Tikhonov 10 0.2601
Object space / Tikhonov 50 0.2497
Data space / TV 2 × 10 0.2291
Object space / TV 2 × 50 0.2019

Table 5.4 Summary of the reconstruction results on the numerical phantom. The

NRMSE is defined as ‖x̂−xGT‖
‖xGT‖ .

good tradeoff between algorithm speed (number of required iterations) and recon-
struction quality can be obtained with data space preconditioning using a limited
number of iterations and no regularization. The best reconstruction quality can be
obtained with object space preconditioning and TV regularization, it requires a 20-
fold more amount of iterations and contains very much reduced noise and artifacts.
This is however much less work then when solving the non-preconditioned system,
which would require again an 8-fold more amount of iterations to attain the same
result.

To illustrate the computational time that is needed: a reconstruction using the
FBP method takes about 0.5 seconds, using the Data space / No regularization
method takes about 4 seconds and using the Object space / TV method takes about
80 seconds. These times were obtained at an Intel Core2 Quad Q8200 running Matlab
with multithreaded mex functions to calculate the photoacoustic projection integral.
The number of pixels involved in a reconstruction is 300 × 300 and the number of
measurement signals is 160.

Experimental evaluation

After these numerical simulations, we have performed an experiment with an optically
absorbing square like structure in our PER-PAT experimental setup. The reconstruc-
tion we show here is with illumination from the right side only with one projection
measurement, i.e., without rotating the object in the setup. The result of this left
illuminated square is displayed in Figure 5.17. From these reconstructions we can
see that the best result is obtained with the iterative approach, by using TV regular-
ization. This gives a quite nice background with much less artifacts than using the
FBP algorithm. Also the profile plots shows that the exponentially decreasing light
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Figure 5.17 Reconstruction results of a square object illuminated from the right
side. The left column (a) and (c) contains the FBP reconstructions and the right
column (b) and (d) the Object space preconditioning / TV regularization reconstruc-
tions. The top row shows the reconstructed images and the bottom row shows profile
plots through the center of the image.

distribution as one would expect in an optically absorbing structure is much better
reconstructed using the iterative approach, Figure 5.17d, than the FBP approach,
Figure 5.17c.

A full reconstruction using illumination from 90 different angles spread over a full
rotation of 360 degrees is displayed in Figure 5.18. Because in this case the optical
absorption distribution is changing everytime a new projection is measured, it does
not make sense to directly use the iterative approach based on the linear model,
because this model assumes that a stationary optical absorption is present. When
light illumination from different sides would be used, as is planned in the future, it
would again be possible and make sense to use the iterative approach based on the
linear model. Because of this, however, we used the simple FBP algorithm to obtain
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this reconstruction result. Now what we actually see in the reconstruction is the
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Figure 5.18 Reconstruction results using 90 projections/rotations with the FBP
algorithm.

result of averaging of the different projections together. A better result would be
possible by light illumination from more sides, which is something planned for the
future, another possibility would be to extend the measurement model to take the
(rotating) side illumination into account. This is further discussed in the final chapter
on conclusions and discussion.

5.2.6 Conclusions

In this section we have looked at the photoacoustic measurement model. An efficient
way to calculate the projection integral that is part of this model has been proposed.
The efficiency is caused by representing the optical absorption distribution using ra-
dial basis functions. The impulse response of the transducer and the laser pulse profile
are also contained in the presented measurement model. A fast iterative reconstruc-
tion approach was presented, which uses preconditioning to attain reconstructions
within an acceptable number of iterations. Too overcome the ill conditioning of the
inverse problem associated with inversion of the measurement model, three different
regularization methods were investigated. The best results were obtained with TV
(Total Variation, based on an L1 norm) regularization.

5.3 Reconstruction using an inhomogeneous speed

of sound

In this section we propose an algorithm for the reconstruction of optical absorption
images where speed of sound inhomogeneities are taken into account. In our PER-PAT
imaging setup, a speed of sound image can be reconstructed prior and independently
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of the optical absorption reconstruction process, as was discussed in chapter 4. The
proposed algorithm will be based on this already known speed of sound distribution.

5.3.1 Previous work

In most of the existing photoacoustic reconstruction algorithms, the acoustic proper-
ties are assumed to be homogeneously distributed. Objects which do not satisfy this
homogeneity cannot be accurately reconstructed with these algorithms and result in
blurred and artifacted images. Several authors have considered the incorporation of
speed of sound inhomogeneities in the reconstruction process. These methods can
be divided into methods which require an a priori known speed of sound map and
methods without this requirement.

Algorithms which require an a priori known speed of sound map

Anastasio et al.[75] demonstrated the reconstruction of photoacoustic measurements
by assuming an a priori known speed of sound map. Using this speed of sound map,
curved iso-time of flight (TOF) contours were calculated by assuming straight ray
propagation of speed of sound. The photoacoustic measurement function, valid for
homogeneous speed of sound distributions was modified to include inhomogeneous
speed of sound distributions by specifying the integration over the curved iso-TOF
contours instead of circles. The reconstruction was then accomplished by solving the
positive linear photoacoustic measurement equation by using an EM-algorithm.

Jin andWang[76] used a similar approach. The speed of sound map in this case was
pre-calculated by performing a separate ultrasound transmission tomography (UTT)
step. Here linear ray paths are assumed so that a filtered back projection reconstruc-
tion can be used in the UTT step. Curved iso-TOF contours were then calculated
using the same algorithm as Anastasio et al[75], i.e. by assuming straight ray sound
propagation. The inversion of the linear photoacoustic measurement equation was
then performed by directly using the iterative LSQR method[54].

Algorithms which do not require an a priori known speed of sound map

Xu and Wang[77] studied the effects of acoustic heterogeneities in PA breast imaging.
The acoustic property distribution was modeled with a speed of sound map consisting
of two different areas, a boundary area and an inner part both with a different velocity.

Jiang et al[78] used a finite element discretized version of an inhomogeneous acous-
tic wave equation in the frequency domain. In the wave equation, terms representing
the optical absorption distribution, acoustic property distributions and generated
pressure are present. This results in a non-linear system of equations involving the
unknown optical absorption and acoustic property distributions and the known pres-
sure which is measured at the boundary of the imaging domain. The reconstruction
algorithm is then implemented by iteratively solving a linearized system of equations.
The linearization is done by calculating a first order Taylor expansion with respect
to the unknown optical absorption and acoustic property distributions.
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Jin Zhang et al[79] use the same photoacoustic measurement function as Anastasio
et al[75] to relate the optical absorption distribution and curved iso-TOF contours to
the measured ultrasound signals. The speed of sound distribution was not assumed
to be known a priori, however a low dimensional parametrization was used. This
parametrization allows the speed of sound distribution to be represented by a lim-
ited number of predefined areas with unknown constant speed of sound values. The
actual values of the predefined areas are a priori unknown, but their boundaries are
assumed to be known. A cost function was formulated that minimizes the difference
between predicted and observed measurements and penalizes the roughness of the re-
constructed speed of sound and optical absorption distributions. The nonlinear cost
function was minimized by iteratively switching between solving for the speed of sound
distribution with constant optical absorption and solving for the optical absorption
distribution with constant speed of sound. In the first step, with constant optical
absorption, a gradient descent step was performed where the direction of the cost
function gradient was calculated numerically. In the second step, with constant speed
of sound, a quadratic cost function is obtained which was solved using a conjugate
gradient method.

Chi Zhang and Wang[80] also propose a method which does not assume any speed
of sound distribution to be known a priori. In this method, curved iso-TOF contours
are used again in the formulation of the photoacoustic measurement model. However,
the calculation of these iso-TOF contours is completely different and does not involve
tracing rays through an intermediate speed of sound distribution. Instead, the corre-
lation between integrated photoacoustic signals from origin symmetric detector pairs
is used. In the derivation of this method, several approximations were used which
mainly involve the assumption that the imaged object is small or equivalently that
the detectors are far away from the imaged object. Also, the speed of sound inhomo-
geneities should not be too high. The approach comes down to calculating a constant
speed for each projection. Projections from detector pairs symmetrically with respect
to the origin then share the same speed of sound.

5.3.2 Approach

Since we have already obtained a speed of sound map from our passive element mea-
surements, as described in chapter 4, we will use this map in the optical absorption
reconstruction. First we will look at the wave equation, in case of an inhomogeneous
speed of sound distribution and use an approximate solution to this wave equation,
exactly in accordance with [75]. The we propose a new way to calculate the time
of flight values needed in the approximate solution. The optical absorption recon-
struction is still a linear problem and reconstructions will be calculated using the
techniques from section 5.2.
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Photoacoustic wave propagation

The propagation of photoacoustic pressure waves in inhomogeneous speed of sound
media, is governed by the following partial differential equation[76]:

∇2p(r, t)− 1

c2(r)

∂2p(r, t)

∂t2
= − β

Cp

∂I(t)

∂t
A(r) (5.47)

Here, β is the volume thermal expansion coefficient, Cp is the specific heat, p(r, t) is the
generated pressure at location r and time t, c(r) is the acoustic speed distribution, I(t)
is the laser pulse profile and A(r) is the optical absorption distribution. A solution to
this wave equation can be found for the constant speed case. The illumination function
of the laser I(t) will be seen as a delta pulse. In the case of an inhomogeneous speed
of sound distribution, an approximate solution can be found as[77]:

p(r, t) = η
∂

∂t

∫ ∫

t=tf (r′,r)

A(r′)

|r− r′|dr
′ (5.48)

where η is a constant and tf (r
′, r) is the TOF for a pressure wave to travel from point

r to point r′. This function is dependent on the speed of sound distribution c(r).
Relation (5.48) shows that the generated pressure can be seen as the projections over
iso-TOF contours, which are determined by the TOF function tf (r

′, r). From this
relation, we can see that given a speed of sound distribution, the relation between
optical absorption A(r) and the measured pressure p(r, t) is linear. This relation has
been used by the authors of other SOS compensated photoacoustic reconstruction[75,
76, 79, 80] methods. Their approaches differ in the way that the TOF function
is calculated. The first three authors use a ray integral over the speed of sound
distribution:

tf (r
′, r) =

∫

l(r′,r)

1

c(r′′)
dr′′ (5.49)

where the ray path is the straight line connecting r′ and r directly. An other approach
was used by Chi Zhang and Wang[80], which calculate the function based on the cross
correlation between received signals of two opposite detector pairs:

tf (r
′, r) =

|r′ − r|
2|r| argmax

t
R(r, t) (5.50)

here R(r, t) is the cross correlation function between the integrated measured signals
of the detector at position r and the symmetrically opposite detector −r.

We propose a different approach to calculate the TOF values, which takes refrac-
tion of rays into account. Our approach is based on solving the Eikonal equation:

|∇t(r)|2 =
1

c(r)2
(5.51)

The Eikonal equation can be used to model acoustic wave front propagation with
inhomogeneous speed of sound distributions. A computationable efficient method
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for calculation of the first arrival time solution to this equation can be obtained via
the fast marching method (FMM)[57]. The effectiveness of the FMM method to
incorporate refraction of rays has already been demonstrated in the application area
of UTT by Li et al[81, 82].

Calculating the TOF values

For each detector position, TOF values have to be calculated for each of the points in
the grid. As explained before, we will use the first arrival time solution to the Eikonal
equation to obtain these TOF values using the FMM[57] method.

The FMM method is an algorithm that solves the Eikonal equation in a single
pass using upwind finite differences. We have implemented the high accuracy FMM
(HAFMM) which uses second order accurate approximations to the gradient. When
a good initialization is used, the numerical errors that occur in the solution are very
small. The grid that we will use to represent the TOF values will enclose the same
area as the optical absorption map, but does not need to have a the same grid spacing
(it can be coarser). The grid is the same as the grid in which we know the speed of
sound distribution. In this section we assume that this speed of sound distribution is
known and in the next section we will see how we obtain this distribution.

We initialize the FMM method by assuming that the speed of sound outside the
defined speed of sound grid has a constant and known value. The boundaries of the
TOF grid which are in sight from the detector position are then initialized by assuming
we can calculate it directly from the distance to the detector and the background speed
of sound value. The in sight boundary grid points and their direct neighbor grid points
are then pre calculated. This gives a good initialization to start with the HAFMM
(this method requires the two neighboring grid points to be known for second order
accurate propagation). After initialization the algorithm is run until the TOF values
at all grid points have been calculated.

This procedure is repeated for all different detector positions, resulting in n dif-
ferent TOF maps. Since the grids of the optical absorption map and the TOF maps
are not necessarily the same, we use bicubic interpolation to obtain the TOF values
at off grid points.

Reconstructing the optical absorption distribution

The difference in the measurement model where a homogeneous speed of sound dis-
tribution is assumed, as in section 5.2 and the measurement model for a homogeneous
speed of sound distribution are very small. The only difference is in the projection
integral. Recalling the projection integral from section 5.2, (5.13):

∫

‖rd−r′‖=ct

A(r′)dr′ (5.52)
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which is now replaced with
∫

t=tf (rd,r′)

A(r′)dr′ (5.53)

Thus, instead of using tf (rd,p
′) = 1

c
‖rd − r′‖, we now use the solution of (5.51) to

determine the time of flight. For every detector element rd, a time of flight map
t(r) can be calculated using the FMM. This time of flight map is then resampled
at the correct grid points of the optical absorption map to obtain the needed values
tf (rd,p

′). For the rest of the reconstruction algorithm, all the techniques discussed
in section 5.2 can be used.

5.3.3 Evaluation

The evaluation of the speed of sound correction method consists of two parts. First a
computer simulation study was conducted, with a numerical speed of sound phantom
and a numerical optical absorption phantom. These results will give an impression of
the performance of the algorithm and its performance compared to other algorithms.
After that, a phantom object with a speed of sound contrast and optical absorp-
tion contrast was placed in the PER-PAT experimental setup. The measurements
and results obtained from this phantom study are given in the second part of the
evaluation.

Simulation study

The simulation data The geometrical parameters of our physical experimental
setup were used in the generation of simulation data. To generate the measurements,
we use high resolution numerical phantoms on which we apply the forward model
(5.48) of the photoacoustic measurements. The numerical phantoms are displayed in
Fig 5.19. This results in a generated sinogram as displayed in Fig.5.20.
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Figure 5.19 Overview of the numerical phantoms used in this study
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Figure 5.20 Photoacoustic pressure measurements obtained from the numerical
phantoms

Reconstructions using the different algorithms After reconstructing the speed
of sound distribution, using techniques from chapter 4, we proceeded with the re-
construction of the optical absorption distribution. Here we use the photoacoustic
measurements displayed in Fig. 5.20. Different algorithms were tested.

Uniform speed of sound The first algorithm we implemented is based on a con-
stant speed of sound distribution. It does not take into account curved iso-TOF
contours. We set the speed of sound equal to 1500 m/s, which is the speed
of sound of the background medium. The reconstruction result is displayed in
Fig. 5.21a and a profile plot is displayed in Fig. 5.22a. We can see that there
are blurring artifacts resulting from the incorrect speed of sound assumption.
Especially the small structure above the center is distorted.

No speed of sound distribution We implemented the algorithm of Chi Zhang and
Wang[80] which does not need an a priori known speed of sound distribution.
For the reconstruction, we did not use their modified FBP approach, but used
our approach to solve the resulting linear system of equations, which should
give better results. The reconstructed image is displayed in Fig. 5.21b and a
profile in Fig. 5.22b. The reconstructed image still contains artifacts, in fact
it is not much better than using the assumption of a uniform speed of sound.
The advantage, however, is that no speed of sound value needs to be given
to the algorithm, which might not always be known accurately. The authors
claim that the algorithm should be able to deal with small speed of sound
inhomogenities of up to 10%. This is not true for our simulation study which
also has inhomogenities of up to 10%, however the inhomogenities are above
and below the background speed of sound. Their algorithm performs better
when all inhomogenities are either all above or all below the background speed
of sound.

Assuming straight ray propagation To investigate the effect of using straight ray
propagation, we used the straight ray reconstruction result of the speed of sound
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(d) RMSE = 0.0281

Figure 5.21 Optical absorption distribution reconstruction results. Shown here
are the four different implementations with the corresponding RMSE with respect
to the ground truth data. (a) Reconstruction assuming a uniform speed of sound
of 1500 m/s. (b) Reconstruction assuming no sound speed distribution, with the
correlation method of Chi Zhang and Wang[80]. (c) Reconstruction based on straight
ray approximations. (d) Reconstruction using our proposed ray refraction correction
method.

map. The iso-TOF contours were subsequently calculated by tracing straight
rays through the obtained speed of sound map. The obtained linear system was
solved and the solution is displayed in Fig. 5.21c. A profile of the reconstruction
is displayed in Fig. 5.22c. The result is a lot improved compared to the uniform
speed of sound reconstruction. The are hardly any artifacts visible anymore
and most of the RMSE error is probably due to the limited bandwidth of the
reconstructed image.

Assuming bent ray propagation Finally, our proposed method to reconstruct a
speed of sound distribution with refraction corrections and using the result with
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the HAFMM method to calculate iso-TOF curves is tested. The results of the
reconstruction are displayed in Fig. 5.21d and Fig. 5.22d. The results are
artifact free and good reconstructions can be obtained.
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Figure 5.22 Profile plots along the horizontal center of the images shown in Figure
5.21. (a) Reconstruction assuming a uniform speed of sound of 1500 m/s. (b) Recon-
struction assuming no sound speed distribution, with the correlation method of Chi
Zhang and Wang[80]. (c) Reconstruction based on straight ray approximations. (d)
Reconstructions using our proposed ray refraction correction method.

Phantom study

In this following study, a hybrid phantom with speed of sound and optical absorp-
tion contrast was placed in the PER-PAT experimental setup. The layout of the
cylindrically shaped phantom is displayed in Figure 5.23.

Measurements on this phantom were taken at five different heights. At the first
height we expect to see only the intersection with vertically positioned hairs and at
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Figure 5.23 Images of the hybrid phantom used in the phantom study. The phan-
tom consists of two materials, PVA and Agar each with a different speed of sound.
Seven hairs are added for optical absorption contrast. Further down the phantom,
some of the hairs are curved in the slice direction as can be seen in (b).

the final height we expect to see some of the curled up hairs in the slice itself. The
reconstructions look similar, with the difference that at the final height the curled up
hairs are visible, the reconstruction of this final height is displayed in Figure 5.24.
From these reconstructions we clearly see that the uncorrected reconstructions suffer
from the effect of a non-homogeneous speed of sound distributions. The correction
by using the proposed speed of sound correction approach works very well, as can be
seen in the right column of the figure.

5.3.4 Conclusions

In this section we presented a new method to reconstruct optical absorption distribu-
tions using a known speed of sound map. In our PER-PAT this speed of sound map
can be estimated using the techniques described in chapter 4. Our method differs
from existing methods that correct for speed of sound inhomogeneities in the way in
which the iso-time of flight (TOF) contours are calculated. We use the Fast Marching
method on the known speed of sound map to quickly calculate TOF values at each of
the pixels in the reconstruction grid. By using the Fast Marching method, we take ray-
refraction effects into account in this calculation. This is opposed to existing methods,
which assume straight ray propagation in the TOF calculation. The improvements
over existing methods are then a slight increase in accuracy and a computationally
more efficient way to perform the reconstruction. Our proposed correction method,
in combination with the techniques of chapter 4 to estimate the speed of sound map,
has been shown to work well in practice by experimental evaluation.
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(a) Uncorrected reconstruction

X [mm]

Y
[m

m
]

-5 0 5 10

-8

-6

-4

-2

0

2

4

6

8

10

(b) SOS corrected reconstruction

Figure 5.24 Reconstructions of the hybrid phantom with and without the proposed
speed of sound correction algorithm. The reconstruction on the top is reconstructed
assuming a homogeneous speed of sound distribution, with a value equal to the sur-
rounding water. The reconstruction on the bottom is reconstructed by using the
speed of sound correction algorithm. The speed of sound map was obtained using the
passive element based techniques in chapter 4.
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5.4 Motion Correction

In this section we introduce an approach that can be used to estimate motion from
an object measurement by using specific landmarks which are attached to this object.
Once the motion is estimated, it is used in a modified reconstruction algorithm to
correct for the motion artifacts.

5.4.1 Introduction

The approach and results used in this section are applied to photoacoustic mea-
surement geometries where a single detector element is rotated around an object of
interest. Which is in contrast with our PER-PAT imaging setup we have a complete
array rotating around the object of interest. Effectively we are now only using the
center sensor element from the array. The results of this section can be generalized to
the complete rotating array scenario. An illustration of the measurement geometry
for the single detector case is displayed in Figure 5.25.

φ

Detector

Object

ps,1

ps,2 ps,2

r

x

y

Figure 5.25 Schematical overview of the single element detector geometry. Also
shown in this figure are the object and the landmark elements which have to be
attached to the object to image.

In photoacoustic imaging, reconstruction of the optical absorption distribution in-
volves back projection of ultrasound measurements in a spatial map. Different sets
of ultrasound measurements are obtained by allowing the object (or the measure-
ment system) to rotate in a computed tomography like way. However, unexpected
movements of the object during the measurements can distort this reconstruction and
result in blurred images. The aim of this section is to develop a technique that cor-
rects for these unexpected and a priori unknown movements. Our approach is based
on tracking known landmarks in the received signal. These landmarks have to be
attached to the object under investigation as displayed in Figure 5.25. By assuming
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rigidity of the object under consideration, the tracking of landmarks in the PA signal
can be used to estimate small translations of the object during signal acquisition.
These estimated translations represent the unexpected object movement and can be
used in the reconstruction phase to obtain a motion corrected image.

In our approach, we will take measurements at n different positions {r1, . . . , rn},
which describe a circle in a plane according to

ri = r

[

cos

(

i− 1

n
2π

)

, sin

(

i− 1

n
2π

)]T

(5.54)

where r is the radius of this circle and the measurements are numbered i and range
from 1 to n. A measured signal at a position ri consists of samples at distinct time
points

si =









p(ri, t
(i)
0 )

...

p(ri, t
(i)
m )









(5.55)

where the relation between the time points is given as t
(i)
j+1 = t

(i)
j + T with T the

period of the sampling frequency. Since measurements at different positions are not

taken at the same time (i.e. t
(i)
0 6= t

(i+1)
0 ), we have to take into account the dynamics

of the system. The most important aspect here is the uncontrolled and unwanted
movement of the object during measurement acquisition. The measurements si are
not directly used, but first a pre-processing step is applied which extracts time of
flight measurements z from these pressure measurements.

5.4.2 Problem formulation

Our problem can be defined as a state estimation problem of the unknown object
motion (state) during measurement acquisition and to use the estimated object motion
in the image reconstruction process. To solve this problem, we will formulate and test
a method involving the tracking of object landmarks during image acquisition.

We assume that the structure of the object is rigid. The unwanted movement of
the object during measurement acquisition can thus be described as a rigid trans-
formation over time. In our setup, we take measurements in a 2-dimensional plane,
and consequently we will reconstruct 2-dimensional images of the imaged structure.
We will describe the rigid transformation of the object at each measurement step i
using the state vector xi. For consecutive measurement steps, the changes in the
transformation are small. The dynamics of the system can simply be captured as:

xi+1 = xi + vi (5.56)

where vi is a random variable. Because we assume that the movement is smooth, and
restricted by the variance of the random variable vi.

The landmarks in the object will help us to estimate the evolving state vector.
Observations of these landmarks will be used to to decrease the uncertainty of the
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estimated state vector. A relation between observations and the current state xi can
in general be described as:

zi = hi(xi,ϕ,wi) (5.57)

where zi is a vector of observations, ϕ is a vector of parameters that influence the
measurement function and wi is a random variable describing the uncertainty in the
observed measurements. The exact form of the measurement function hi() will be
discussed in section 5.4.4. When tracking landmarks, time of flight values will be
used as observations of the individual landmarks in the object. The exact value of
the parameter vector ϕ is important for a good estimation of the state vector xi but
can sometimes still be uncertain a-priori. The a-priori knowledge available about the
parameters can best be quantified in a probability density function (pdf) p(ϕ). After
all, what we are interested in are the values of x1:n and ϕ that maximize the pdf

p(x1:n,ϕ|z1:n) (5.58)

representing the uncertainty on our estimate of x1:n and ϕ, given the observations
z1:n. The problem here is that both the state vector and the parameters have to
be estimated. We formulated this estimation as an iterative optimization process.
By using Bayes theorem and dropping non-informative terms from the pdf, equation
(5.58) can be written as

p(z1|x1,ϕ)p(x1)p(ϕ)

p(z1)

n
∏

i=2

p(zi|xi,ϕ)p(xi|xi−1)

p(zi|zi−1)
(5.59)

using the relations (5.56) and (5.57).

5.4.3 Solution using linearization

We assume that the random variables vi and wi, representing the uncertainty in
the state dynamics and the observations respectively, are Gaussian distributed. If
now both the state dynamics and the measurement function were linear, optimization
of the posterior pdf (5.58) would result in determining the minimum of a quadratic
function. This minimum is easily found and thus we try to base our solution to the
problem on linearization of the measurement function.

The quadratic function that we now have to optimize consists of one part repre-
senting the prior knowledge of the unknown variables and another part representing
knowledge on observations of the unknown variables. This function is derived from
(5.58) which is, due to the linearization, a product of Gaussians. By taking the log-
arithm and removing terms which are not dependent on the unknown variables, we
end up with the sum of squared Mahalanobis distances of each of the individual pdfs
in (5.59):

g(x1:n,ϕ) = gobs(x1:n,ϕ) + gprior(x1:n,ϕ) (5.60)

This quadratic function can be written as (after substituting x = [xT
1:n,ϕ

T ]T )

g(x) = g0 +GTx+ xTHx (5.61)
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Figure 5.26 Measured pressure signal s1

where H is the Hessian matrix of g. This function has a unique minimum when the
Hessian matrix is positive definite and thus invertible, which is guaranteed by includ-
ing the prior knowledge on the unknown variables. The minimum can subsequently
be found by setting the gradient of g to zero and solving the linear system of equations

G+ 2Hx = 0 ⇔ x = − 1
2H

−1G (5.62)

In combination with the linearization, this is an iterative optimization procedure,
which is also known as Newton’s method [35]. The solution to the linear system of
equations is used as the linearization point in the next iteration. The optimization
procedure will be initialized with the linearization point set at the expectation value
of the unknown variables given the a-priori information

5.4.4 Implementation of the solution

In this section, the implementation of the motion correction algorithm will be de-
scribed. To illustrate the individual steps in the algorithm, we show the results of
each of the steps applied to measurements obtained from experiments on a phantom
object.

The phantom object used here was a structure containing four landmarks, where
each landmark is a human hair with a diameter of 150 µm. A series of measurements
is made by rotating an ultrasound sensor around this structure, describing a full circle
in 120 steps (i.e. an increase in angle of 3◦ each time). The phantom is illuminated
by a laser pulse and the generated pressure wave is subsequently measured at these
120 positions in a circle around the phantom, which results in n = 120 vectors of
measurements {si}ni=1. The measurements are sampled at a frequency of 20 MHz, and
the speed of sound c in the medium is assumed to be 1500 m/s. A single measurement
vector s1 is displayed in Fig. 5.26. The whole set of measurement vectors (vertically
stacked) is displayed in Fig. 5.27a.

Signature of the landmark

Landmarks in the imaged object will be visible in the measured signal as a distinctive
waveform of a certain length. We term this distinctive waveform the signature of
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Figure 5.27 Measurements shown for a time domain region of interest.

the landmark and we have to determine this signature first, so that it can be used
to extract time of flight (TOF) measurements of the landmarks from the measured
signal. To extract these signatures from the measurements in a robust way, without
being disturbed by other photoacoustic sources from inside the object, we will use
the following approach. First we try to detect the presence of signals (landmark or
not) by calculating the envelope of the signal. The envelope can be calculated by
taking the absolute value of the analytic signal of the measurement[83]. The envelope
of the phantom object measurements is displayed in Fig. 5.27b. The maxima in
this envelope signal can subsequently be used to find potential realizations of the
landmark signature in the neighborhood of those maxima. However, due to noise in
the measurements, not all maxima found in the envelope signal are in reality caused
by a landmark. To be robust and discard these outliers, we can use the fact that for
one landmark the TOF trajectory is periodic and approximately sine shaped (this
can also be observed in Fig. 5.27b). The maxima which are then too far away from
one of the found sines can be marked as outliers. We can thus parametrize the TOF
trajectory as a sine function with a known period, but unknown offset, amplitude and
phase. However, the offset is the same for each of the sine functions generated by the
different landmarks, and can be determined by taking the mean value of all TOFs
on which maxima have been found in the envelope signal. This leaves us with two
parameters – amplitude and phase – for each of the four sine waves (because we have
four landmarks in our example). To discard signals from inside the object, we can set
a threshold on the minimum amplitude that the sine shaped trajectory caused by a
landmark should have.

The problem that now has to be solved is follows: Determine the most likely set
of parameters that would generate an envelope image as we have observed it. The
likelihood of a certain parameter vector can be evaluated by a Hough transform from
the image to our parameter domain as

p(A, θ) ∝
∫∫

I(t, i)δ

(

t−A sin

(

θ + i
2π

120

))

dtdi (5.63)

where I(t, i) is the envelope image as displayed in Fig. 5.27b. Since we are not
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interested in the actual intensities of the produced sines, we first preprocess the image
I(t, i) so that only the positions of maxima in the envelope are of influence and the
relative intensity of the maxima are discarded. This preprocessing is achieved by
using the TOFs of the estimated maxima to generate a new image, where we use a
Gaussian kernel to model some of the uncertainty involved in the estimation of the
maximum. The preprocessed image is then obtained as the sum of Gaussian kernels
around the estimated maxima positions

Ipre(t, i) =

4
∑

j=1

e
−(zij−t)2

2σ2 (5.64)

where the vector zi = [zi1, . . . , zi4]
T contains the TOFs of the maxima found in the

envelope of each signal si. The preprocessed image obtained from the envelope image
by using a kernel width of σ = 3 is displayed in Fig. 5.27c. The pdf p(A, θ)
can now be calculated by applying the Hough transform as given in (5.63) using the
preprocessed image. The resulting pdf is displayed in Fig. 5.28. This pdf clearly
contains four maxima, which are the parameters that generated the four sine waves.
The four sets of parameters, being the four maxima in the pdf p(A, θ), can now be
used to locate the outliers in the data.

Based on the positions of the estimated maxima, we now know which parts of
the measured signal contain a realization of the landmark signature. These parts
can be extracted from the signal and used for further estimation of the landmark
signature. However, the exact location of the signature inside each extracted signal
is not known. To align the extracted signals with respect to each other, we first
increase the resolution by doing a cubic spline interpolation of the extracted signal
and resampling this interpolated signal at a higher sample rate. This allows us to
more accurately align the extracted signals. After observing the extracted signals,
the alignment is based on the heuristic of aligning the zero crossing corresponding to
the highest maximum-to-minimum difference in the signal.

It is possible that among the aligned signatures there are still outliers left, for ex-
ample due to incorrect alignment or otherwise corrupted signals. These are removed
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Figure 5.29 Estimated landmark signature (upsampled with a factor of 10 by in-
terpolation)

by assuming that the aligned dataset is approximately Gaussian distributed. When
any of the principal components in the dataset (based on eigenvector analysis of the
covariance matrix) do not seem to be Gaussian distributed, the outliers are removed.
The components are checked for conformity to the Gaussian by looking at the kur-
tosis of the dataset projected along the component. The finally estimated landmark
signature is displayed in Fig. 5.29.

Extraction of landmark measurements

Having defined the landmark signature, the next task is to extract the locations
(TOFs) of the landmark signatures from the measured pressure signals. This is done
by correlation of the measured signal si with the landmark signature. The locations
of the maxima in the correlated signal are taken as the TOF measurements. The
number of correlation maxima that will be used is, at most, equal to the number of
landmarks in the imaged object, but can be less if the value of a found maximum is
below a certain threshold. This means that not all sensor measurements include an
estimated TOF for each landmark.

Here again we have to cluster the TOF measurements according to their landmark
source. To do this, we will use a Hough transform, exactly as was described in the
previous section about the landmark signature. This Hough transform gives the most
likely parameters that generated the four sines. The TOF measurements closest to
the estimated sine of the specified source (below some threshold distance to remove
outliers) will be assigned to the corresponding source.

Minimizing the cost function

With the TOF measurements available and each measurement assigned to the correct
landmark source, the next task is to minimize our cost function. This involves the
use of a measurement function that relates the measurements to the unknown state
vector of the transformations (object motion) and the parameter vector containing
information about the measurement geometry to the TOF measurements. We will
model the state vector as the relative (in plane) translation of the object with respect
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to the first sensor reading

xi =

[

Tx

Ty

]

(5.65)

The parameter vector in our case contains the positions of the four landmarks
(p1, . . . ,p4), the radius of the circle on which the sensors are positioned (r) and the
synchronization time, being the difference between the time of firing of the laser pulse
and time of receiving the first measurement sample (t0), all placed in one parameter
vector

ϕ =























p1x
p1y
...
p4x
p4y
r
t0























(5.66)

The measurement function relates the state vector and the parameter vector to the
TOF measurements as

zij = hij(xi,ϕ,wi) =

∥

∥

∥

∥

pj +Ti − r

[

cos θi
sin θi

]∥

∥

∥

∥

c
− t0 + wij (5.67)

where θi is the rotation of the ultrasound sensor at the ith measurement, c is the
known speed of sound and wi is a Gaussian random vector with covariance Pww. The
subscript j indicates for which landmark the measurement function is used (since not
all landmarks might have a TOF measurement in each measurement si).

Our cost function is based on the linearization of the measurement equation and
contains the sum of the Mahalanobis distances of each of the pdfs in (5.59). The
measurement function can be linearized as

hij(xi,ϕ,wi) ≈ z
(l)
ij +H(l)

x xi +H(l)
ϕ ϕ+wi (5.68)

with
z
(l)
ij = hij(x

(l)
i ,ϕ(l), 0) (5.69)

where linearization is done about the point x
(l)
i and ϕ(l) and H(l)

x and H(l)
ϕ are the

appropriate Jacobian matrices. Using this linearization, the measurement likelihood
can be written as

p(zij |xi,ϕ) ∼ N (z
(l)
ij +H(l)

x xi +H(l)
ϕ ϕ,Pww) (5.70)

The state transition function is already linear and has the simple form of

xi+1 = xi + vi (5.71)

with vi a Gaussian random vector with covariance Pvv, so that we can write the
transition pdf as

p(xi+1|xi) ∼ N (xi,Pvv) (5.72)
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Figure 5.30 Evolving state vector

From these two pdfs, the Mahalanobis distances can easily be extracted and summed,
resulting in the quadratic cost function. Iterative optimization of this cost function
using the phantom object measurements converged quickly in 13 iterations to a solu-
tion. The evolving state vector xi in the final solution of the optimization is displayed
in Fig. 5.30.

5.4.5 Image reconstruction

The final task is to reconstruct the image from the obtained pressure measurements.
For this we use the filtered backprojection algorithm[6]. In the backprojection phase
we will correct for the estimated motion, by shifting each image with the correct offset
to compensate for the motion.

(a) Reconstructed image with motion correc-
tion

(b) Reconstructed image without motion cor-
rection

Figure 5.31 Reconstructed image of the phantom object with motion present dur-
ing the image acquisition phase.

Results of the image reconstruction are displayed in Fig. 5.31. Here we can
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clearly see the improvement that is obtained by correcting for the estimated object
motion during the measurements acquisition. The uncorrected image clearly shows
the motion. The reconstruction of the hairs does not result in four small dots, but
instead we observe that the dots are somewhat distorted. This is shown more clearly
in the zoomed in versions displayed in Fig. 5.32.

(a) Lowest hair, with motion correc-
tion

(b) Lowest hair, without motion cor-
rection

(c) Most right hair, with motion cor-
rection

(d) Most right hair, without motion
correction

Figure 5.32 Zoomed reconstruction two hairs in the phantom object (width =
2mm)

5.4.6 Conclusion

In this section we have demonstrated that it is possible to correct for unwanted ob-
ject motion during measurement acquisition. The image reconstruction was modified
by a motion corrected backprojection algorithm. For this motion corrected image
reconstruction to work, the unknown object motion has to be known. Therefore we
proposed a motion estimation algorithm, which is based on tracking landmark sig-
natures in the photoacoustic measurements. The landmark signatures are generated
by landmark elements which have to be attached to the object. We have used small
human hairs for this purpose, which gives good motion correction results.
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6
Conclusion and recommendations

6.1 Conclusions

This thesis presented an analysis, description and experimental validation of the signal
processing, i.e., calibration, post-processing, image reconstruction, needed in a Passive
Element enRiched PhotoAcoustic Tomography (PER-PAT) imaging setup. In this
chapter we will come to conclusions by answering the research questions posed in
Chapter 1, section 1.4.1. The questions will be discussed for each topic separately.

6.1.1 Calibration

In the calibration chapter an analysis on the accuracy and the presentation of an algo-
rithm that can be used in the PER-PAT setup to estimate the geometrical parameters
needed for image reconstruction were presented.

Does the calibration problem have a unique solution and what are the
conditions for having a unique solution?

Since the calibration problem consists of processing two measurements, the refer-
ence measurement and the calibration measurement, both with their own calibration
procedure. We will answer the questions for each measurements separately.

Reference measurement When a single passive element is used in the PER-PAT
setup, it is in some geometrical configurations possible that the reference cali-
bration does not have a unique solution. In the linear array configuration this
problem occurs when the passive element is positioned on, or close to, the axis
of the sensor elements. This is in practice never the case, so for the linear array
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there will always be a unique solution to the calibration problem in the domain
where the passive element is expected to be positioned. The situation is differ-
ent, however, for the curved array. Whenever the passive element is positioned
on, or close to, the virtual circle spanned by the curvature of the curved array,
there can be an ambiguity as to whether the element was positioned inside or
outside of this circle. This happens only when all three parameters, being speed
of sound and the x- and y-positions of the passive element, are assumed to be
unknown. When speed of sound is known and only the passive element position
needs to be determined there is no ambiguity.

Calibration measurement From the calibration measurement we try to estimate
the center of rotation and the speed of sound. The number of rotations necessary
for a unique calibration was found to be at least two, one is obviously not enough
because the center of rotation can only be determined when there is a rotation
involved. Furthermore we found out that there is only one source needed to be
present in the calibration phantom for a unique calibration.

What accuracy can we theoretically expect from a calibration and how
does this depend on the chosen phantom and measurement configuration?

The accuracy of the calibration depends initially on how accurate the time of flight
can be measured from each of the sources present in the calibration phantom. This
accuracy is discussed in the time of flight estimator presented in Chapter 3. For a
given time of flight uncertainty, the effects of using more rotations or more source
in the phantom where simulated and displayed in Figure 2.4. There it is shown for
example that using one source and five rotations gives an accuracy roughly equivalent
to using four sources and two rotations. Furthermore, the effect of the geometrical
configuration of the passive elements on the calibration accuracy, by varying the dis-
tance of the passive elements to the center of the calibration object, is also simulated
and shown in the same figure.

How does a different speed of sound in the calibration phantom affect the
calibration outcome and can we correct for this easily?

The calibration phantom is made of Agar which has a slightly higher (about 0.5%)
speed of sound than the surrounding water. When this effect is not taken into account,
depending on the position of the center of rotation, the resulting calibration will be
biased. These biases can be heavily reduced by using a model that takes this higher
speed of sound into account. This modified model requires that also the shape/radius
of the calibration phantom needs to be known and specified to the algorithm. Refrac-
tion effects can be ignored in this modified model, since this introduces no significant
improvement in accuracy.
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Can we implement a robust calibration algorithm that performs well with
a substantial amount of outliers?

We have proposed a calibration method that has been shown, from measurements with
a lot of noise under far from ideal circumstances, to work very well in the presence of
outliers. The robustness is obtained by using fuzzy clustering with an explicit outlier
class using the Expectation-Maximization algorithm. Furthermore, a coarse to fine
approach with four models of increasing complexity is used to make the optimization
problem feasible.

6.1.2 Estimation of ultrasound parameters

In this chapter the estimation of ultrasound propagation parameters, i.e., time of flight
and attenuation, is discussed. This can be seen as a pre-processing step, necessary
before the image reconstruction of acoustic property distributions can take place. A
maximum likelihood framework that can be used for the extraction of these projection
measurement was presented in this chapter.

How accurate (with an accuracy possibly below the sampling frequency)
can we theoretically extract time of flight measures from photoacoustic
point source measurements and can we design a time of flight estimator
that attains this accuracy in practice?

We have analyzed the problem of estimating the unknown time of flight from the
measurement of a photoacoustic source signal with an ultrasound transducer. An
estimator was derived which, for high SNR, equals the theoretically possible lower
bound on the uncertainty of the estimate, the CRLB. This is an accuracy which can
be far below the time period belonging to the sampling frequency, depending on the
amount of noise present on the measurements. The result is visualized in Figure 3.7a.

Can we design an estimator that operates on ultrasound transmission mode
measurements to estimate frequency dependent attenuation and the cor-
responding speed of sound dispersion?

We have developed several estimators to estimate ultrasound propagation parame-
ters, three of which make it possible to estimate the frequency dependent attenuation
and speed of sound dispersion. The developed estimators have been tested on two as-
pects, the statistical properties describing the accuracy using Monte-Carlo simulations
and the correctness of the underlying models using experimentally obtained measure-
ments. The signal shape change caused by the frequency dependent attenuation was
observed in practice and could well be predicted by the proposed model. From the
Monte-Carlo simulations we found that the performance of the best estimator was
very close to the theoretically possible lower bound (CRLB).
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How does including the Kramers-Kronig relation in the model increase
the accuracy of the estimate with respect to existing estimator that do
not use this extra information?

The increase in accuracy that is gained when using the Kramers-Kronig relation
in the model depends very much on the SNR of the measurements. A low noise
and high noise situation were investigated. In the low noise situation the effect is
quite significant as can be seen in Figure 3.20a, there is a clear separation in accu-
racy between the estimators using the Kramers-Kronig relation (MLMagPhase and
MLFFT/MLTDomain) and the other estimators for all propagation distances. In the
high noise situation, Figure 3.20b, the result is a bit different for the MLMagPhase
estimator, which performance becomes relatively worse with increasing distance. The
MLFFT estimator however still performs better then other estimators which ignore
the Kramers-Kronig information in their model. There is thus a clear accuracy in-
crease when the Kramers-Kronig relation is included into the measurement model.

6.1.3 Reconstruction of ultrasound properties

Here we presented our approach and results for the reconstruction of speed of sound
and attenuation distributions using our PER-PAT setup. An iterative procedure was
proposed to correct for ray refraction effects, by switching between ray tracing through
an estimated speed of sound map and estimating the speed of sound map using the
predicted ray paths.

Can we reconstruct speed of sound and acoustic attenuation distributions
from single passive element measurements?

Using experimental evaluation we have shown that our proposed technique allows
us to reconstruct speed of sound and acoustic attenuation distributions from single
passive element measurements. For single passive elements, a relatively high number
of projections are needed to accurately reconstruct small structures in the object.
For limited projection measurements, a single passive element is not be enough to
reconstruct small structures in the object. However, when only a low resolution
reconstruction is necessary, such as is the case for speed of sound inhomogeneity
correction in photoacoustic image reconstruction, a single passive element might be
enough.

Is there a benefit in using more than one passive element in the setup to
increase the spatial resolution of the reconstruction?

For limited projection measurements, there is a very clear benefit in using multiple
passive elements for the reconstruction of acoustic property distributions. The spatial
resolution significantly increases when more passive elements are used, as can be
observed in Figure 4.13. For measurements with a high number of projections, there
is no improvement in reconstruction when using more than one passive element. In
our setup there is always a very small independent motion in each of the passive
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elements, which introduces inconsistencies in the measurement model. Therefore the
reconstruction using more passive elements is not necessarily better, since including
some bad measurements can degrade the result. This effect is not noticable in the
low projection measurements, because of the lower reconstruction resolution.

Can we deal with refraction effects, i.e., the bending of rays, that can
occur in these ultrasound property measurements?

As mentioned, an iterative method has been proposed to deal with refraction effects.
Experimental evaluation has shown that we can successfully deal with refraction ef-
fects. The objects that we measure typically have a higher speed of sound than
the surrounding coupling medium (water). This results in ray bending towards and
through the object at the boundaries of the object. Not taking ray refraction into
account, i.e., assuming straight ray propagation results in reconstructions with in-
creased dimensions of the object. After a couple of iterations of the method, the
dimensions of the reconstructed object will decrease and match with the true object
dimensions.

6.1.4 Reconstruction of optical absorption

Finally the image reconstruction of optical absorption, the main contrast in photoa-
coustic imaging, was discussed. Analysis and experimental evaluation of iterative and
single step reconstruction approaches were presented. Also two additions to the re-
construction were proposed, being a speed of sound correction algorithm and a motion
correction algorithm.

How much improvement can we expect from iterative reconstruction al-
gorithms in image quality with respect to the much faster filtered back
projection (FBP) type of algorithms?

A substantial improvement in image quality can be gained when using iterative re-
construction algorithms. The filtered back projection algorithm, which is indeed very
fast, suffers from artifacts caused by the back projection over arcs. These artifacts
can almost completely be removed by using a proper iterative reconstruction algo-
rithm. A very important issue in the successful operation of iterative reconstruction
algorithms is regularization. The best results can be obtained by using an L1-norm
term on the image gradient, such as Total Variation, which filters high frequency noise
while having an edge preserving effect.

How can preconditioning help in improving the convergence speed of iter-
ative reconstruction algorithms and how do we obtain a suitable precon-
ditioner?

Iterative reconstruction algorithm can suffer from slow convergence, i.e., requiring a
lot of iterations before converging to a good solution, when used without a precon-
ditioner. We found out that this problem is a big problem in photoacoustic image
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reconstruction. This is mainly caused by the limited bandwith of the transducer which
measures the photoacoustic signals, and manifests itself mostly in the low frequency
content, i.e., the parts of the object with uniform absorption. We proposed a com-
putationaly efficient preconditioner which can be implemented with FFT operations.
The required number of iterations for finding a solution is enormously decreased when
using this preconditioner.

How can we efficiently use an estimated speed of sound map to correct
for blurring effects caused by the false assumption of an inhomogeneous
speed of sound distribution?

Once a speed of sound map is available, as is the case in our PER-PAT setup with
the techniques from chapter 4, it is possible to design a reconstruction algorithm
that corrects for the blurring effects that would otherwise occur. We have proposed
an algorithm that uses the Fast Marching Method (FMM) to calculate time of flight
maps for each projection. The FMM implicitly takes ray refraction effects into account
and is a very fast method to calculate time of flight maps. The calculated time of
flight values are then used in the forward photoacoustic measurement model, and
the resulting inverse problem can be solved with either an iterative method or the
filtered back projection method. With experimental evaluation we have shown that
the proposed approach works very well in practice.

Is unwanted motion a big problem in optical absorption reconstruction and
is there an effective way to correct for this motion in the reconstruction?

In our first version of the photoacoustic measurement setup, we had some problems
with motion of the phantom during the measurement acquisition process. This lead
to blurred optical absorption reconstructions. A simple algorithm, based on tracking
landmarks attached to the object was proposed, and was capable of completely re-
ducing the motion artifacts in the reconstruction. In later versions of the PER-PAT
measurement setup, we did not encounter motion artifacts anymore, so once a stable
setup has been designed, motion of the phantom it is not an issue in optical absorption
reconstruction anymore.

6.2 Recommendations

Estimation of ultrasound parameters To improve the robustness of our ultra-
sound parameter estimators, multipath effects have to be taken into account. When
multipath propagation occurs, interference of the signals from the different paths can
occur which results in a measured signal which can not be predicted with the cur-
rently used model. It could be possible to realize a model that sums the contributions
of different time delays and attenuations, each corresponding to propagation over a
single path. This is however difficult when the time delay differences become very
small. Perhaps extra information, available from the speed of sound reconstruction,
can be used in the ultrasound parameter estimation in an iterative manner. This
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requires the use of a multipath propagation model, instead of the fastest arrival time
model that is being used now to trace rays through the speed of sound map.

Optical absorption reconstruction In our imaging setup we use side illumination
of the object. The laser is rotated, together with the sensor array, around the object.
This results in a different illumination direction for every projection, and thus a
different light absorption profile for each projection. We currently assume in our model
that the absorption profile, which is the unknown parameter of interest, is constant
for all projections. A possible improvement could be made by using an iterative
approach to model the light attenuation as a function of the absorbing structures
for each projection individually. Thus instead of reconstructing the absorbed optical
energy profile, we can try to reconstruct the optical absorbtion properties of the object
and predict the absorbed optical energy profile with the knowledge of the direction
of illumination of the light.
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A
Green’s function of the wave equation

We are looking here for solutions to the wave equation:

∇2p− 1

c2
∂2p

∂t2
= S(r, t) (A.1)

where S(r, t) is a source term, c is the propagation speed in the medium and p(r, t)
is the pressure function. This wave equation is a linear inhomogeneous partial differ-
ential equation. A solution to this equation can be found by determining the Green’s
function (impulse response) and convolve this with the excitation of the differential
equation. The Green’s function is determined by exciting the system with an impul-
sive source according to

∇2G(r, t)− 1

c2
∂2

∂t2
G(r, t) = δ(r)δ(t) (A.2)

where G(r, t) is the Green’s function we are interested in. An expression for the
Green’s function for our system can be derived by considering the boundary conditions
of our problem which are given by

G(r, t) =







0 if t < 0
0 if t → ∞
0 if |r| → ∞

(A.3)

Consequently we can Fourier transform the spatial domain and Laplace transform the
time domain part of (A.2). We define the following Fourier transform

G(k, t) = F
{

G(r, t)
}

=

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

G(r, t)e−jk·rdr (A.4)
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and the following Laplace transform

G(k, s) = L
{

G(k, t)
}

=

∞
∫

0−

G(k, t)e−stdt (A.5)

By subsequently applying both transforms we obtain the transformed differential
equation

−|k|2G(k, s)− s2

c2
G(k, s) = 1 (A.6)

An algebraic solution to this equation can be found:

G(k, s) =
−c2

|k|2c2 + s2
(A.7)

and all we have to do is to inverse transform G(k, s) back to the spatial and time
domain.

The inverse Laplace transform is defined as

G(k, t) = L−1
{

G(k, s)
}

=

∞
∫

0−

G(k, s)estds (A.8)

An expression for G(k, t) can now be found by applying the inverse transform accord-
ing to

G(k, t) =L−1

{ −c2

|k|2c2 + s2

}

= L−1

{ −c2

(s− j|k|c)(s+ j|k|c)

}

=

=L−1

{ −c

2j|k|

(

1

(s− j|k|c) −
1

(s+ j|k|c)

)}

=

=L−1

{ −c

2j|k|
(

ej|k|ct − e−j|k|ct
)

}

=
−c

|k| sin(|k|ct)u(t) (A.9)

The inverse Fourier transform is defined as

G(r, t) = F−1
{

G(k, t)
}

=
1

(2π)3

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

G(k, t)ejk·rdk (A.10)

When we look at G(k, t) as derived in (A.9), we see that the function is rotationally
invariant for k, so that it is more convenient to go over to spherical coordinates. The
spherical coordinates are related to the cartesian ones by

rs = [r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)]T (A.11)

and
ks = [k sin(kθ) cos(kφ), k sin(kθ) sin(kφ), k cos(kθ)]

T (A.12)



189

Because of our rotationally invariant G(k, t), we can align our spherical coordinate
system in the direction of r by choosing θ = 0, so that rs reduces to rs = [0, 0, r]T .
Writing the inverse Fourier transform in spherical coordinates now leads to the fol-
lowing expression

G(rs, t) =
1

(2π)3

2π
∫

0

π
∫

0

∞
∫

0

G(ks, t)k
2 sin(kθ)e

jks·rsdkdkθdkφ =

=
1

(2π)3

2π
∫

0

π
∫

0

∞
∫

0

−c sin(kct)u(t)k sin(kθ)e
jkr cos(kθ)dkdkθdkφ =

=
−cu(t)

(2π)2

∞
∫

0

sin(kct)k

π
∫

0

sin(kθ)e
jkr cos(kθ)dkθdk =

=
−cu(t)

(2π)2

∞
∫

0

sin(kct)k
ejkr − e−jkr

jkr
dk =

=
−cu(t)

(2π)2jr

∞
∫

−∞

sin(kct)ejkrdk =
−cu(t)

(2π)2jr

π

j
(δ(r + ct)− δ(r − ct)) =

=
−c

4πr
δ(r − ct) =

−1

4πr
δ
(r

c
− t
)

(A.13)

And finally written in cartesian coordinates this gives

G(r, t) =
−1

4π|r|δ
(

1

c
|r| − t

)

(A.14)
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B
Definite Gaussian integrals of trigonometric

functions

The results of this appendix are used in chapter 3, section 3.3 on the time of flight
analysis. We will show here how Gaussian integrals of the form:

∫ ∞

−∞
f(x)e−a2x2

dx (B.1)

can be calculated. Where f(x) is a trigonometric function. Hereby we will make use
of the known integral relation:

∫ ∞

−∞
xne−a2x2

dx =











0 if n is odd
√
π

a

n!

2n
(

n
2

)

!

(

1

a

)n

if n is even
(B.2)

Furthermore we will make use of the Taylor series expansions given in Table B.1 and
the double angle formulas in Table B.2.

We will now illustrate how the definite integral

∫ ∞

−∞
cos2(x)e−a2x2

dx (B.3)

can be calculated. We first apply the necessary double angle formula:

∫ ∞

−∞
cos2(x)e−a2x2

dx =
1

2

∫ ∞

−∞
[1 + cos(2x)] e−a2x2

dx (B.4)
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APPENDIX B. DEFINITE GAUSSIAN INTEGRALS OF TRIGONOMETRIC

FUNCTIONS

Function Taylor series expansion

cos(x)

∞
∑

n=0

(−1)n

(2n)!
x2n

sin(x)
∞
∑

n=0

(−1)n

(2n+ 1)!
x2n+1

e−x2
∞
∑

n=0

(−1)n

n!
x2n

Table B.1 Taylor series expansions of useful functions

Function Double angle formula

cos2(x)
1

2
+

1

2
cos(2x)

sin2(x)
1

2
− 1

2
cos(2x)

cos(x) sin(x)
1

2
sin(2x)

Table B.2 Double angle formulas

Next we fill in the Taylor series expansion of the remaining cosine function:

∫ ∞

−∞
cos2(x)e−a2x2

dx =
1

2

∫ ∞

−∞

[

1 +

∞
∑

n=0

(−1)n22n

(2n)!
x2n

]

e−a2x2

dx (B.5)

Then we rewrite the expression in terms of known integral relations:

∫ ∞

−∞
cos2(x)e−a2x2

dx =
1

2

∫ ∞

−∞
e−a2x2

dx+
∞
∑

n=0

(−1)n22n

(2n)!

∫ ∞

−∞
x2ne−a2x2

dx (B.6)

After substitution of the known integral relations in the obtained expression we get:

∫ ∞

−∞
cos2(x)e−a2x2

dx =
1

2

√
π

a

[

1 +

∞
∑

n=0

(−1)n

n!

(

1

a

)2n
]

(B.7)

Here we recognize the Taylor series expansion of the e−x2

function so that the final
expression will be:

∫ ∞

−∞
cos2(x)e−a2x2

dx =
1

2

√
π

a

[

1 + e−
1
a2

]

(B.8)

Similar operations can be applied to other combinations of trigonometric functions
and the resulting integral relations are given in Table B.3.
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Integral expression Result
∫ ∞

−∞
cos2(x)e−a2x2

dx
1

2

√
π

a

[

1 + e−
1
a2

]

∫ ∞

−∞
sin2(x)e−a2x2

dx
1

2

√
π

a

[

1− e−
1
a2

]

∫ ∞

−∞
x cos(x) sin(x)e−a2x2

dx
1

2

√
π

a3
e−

1
a2

∫ ∞

−∞
x2 sin2(x)e−a2x2

dx
1

2

√
π

a3

[

1

2
−
(

1

2
− 1

a2

)

e−
1
a2

]

Table B.3 Integral relations of trigonometric Gaussian integrals
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C
Circular symmetry

Theorem Consider a circle with radius r, centered at the origin, and a point p1

inside the circle at a distance d1 from the center and a point p2 outside the circle at
distance d2 from the center. Then when:

• both points p1 and p2 lie on the same line passing through the origin of the
circle

• the distances d1 and d2 are related via d1d2 = r2

we have that for any point pc on the circle the ratio between the distance from p1 to
that point and the distance from p2 to that point is constant and equal to:

‖p1 − pc‖
‖p2 − pc‖

=
r

d2
(C.1)

Proof With p1 = d1u, p2 = d2u and pc = rv where u and v are arbitrary unit
vectors we get for the ratio of distances:

‖p1 − pc‖
‖p2 − pc‖

=
‖d1u− rv‖
‖d2u− rv‖ =

√

d21 + r2 − 2d1ruTv
√

d22 + r2 − 2d2ruTv
(C.2)
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which after substitution of d1 = r2

d2
and keeping in mind that r > 0 and d2 > 0 results

in:

‖p1 − pc‖
‖p2 − pc‖

=

√

(

r2

d2

)2

+ r2 − 2 r2

d2
ruTv

√

d22 + r2 − 2d2ruTv
(C.3)

=
r

√

(

r
d2

)2

+ 1− 2 1
d2
ruTv

√

d22 + r2 − 2d2ruTv
(C.4)

=
r
√

r2 + d22 − 2d2ruTv

d2
√

d22 + r2 − 2d2ruTv
(C.5)

=
r

d2
(C.6)



D
Accuracy of Monte Carlo simulations

An estimate of the mean of a random variable can be obtained by averaging over a
large number (N) of independently drawn samples xi from the random process:

µ̂x =
1

N

N
∑

i=1

xi (D.1)

Associated with this estimate of the mean are an expected mean and expected variance
of the estimate. The expected mean is given by:

E[µ̂x] = E

[

1

N

N
∑

i=1

xi

]

=
1

N

N
∑

i=1

E[xi] = µx (D.2)

and the expected variance is given by:

Var[µ̂x] = E
[

(µ̂x − µx)
2
]

(D.3)

= E





(

1

N

N
∑

i=1

xi − µx

)2


 (D.4)

= E





(

1

N

N
∑

i=1

xi

)2


− µ2
x (D.5)

=
1

N2

(

Nσ2
x +N2µ2

x

)

− µ2
x =

σ2
x

N
(D.6)

According to the central limit theorem, which states that averaging over a sufficiently
large number of independent random variables each with finite mean and variance will
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be Gaussian distributed, with the estimated value µ̂x will be Gaussian distributed:

µ̂x ∼ N
(

µx,
σ2
x

N

)

(D.7)

where µx is the mean of the random variable and σ2
x is the variance of the random

variable. This estimator gives us an unbiased estimate of the mean. The uncertainty

of the estimate can be expressed by its variance of
σ2
x

N
.

An estimate of the variance of a random variable can be obtained with the sample
variance estimator:

σ̂2
x =

1

N − 1

N
∑

i=1

(xi − µ̂x)
2 (D.8)

This is an unbiased estimator of the variance σ2
x of the random variable. To see that

the estimated is unbiased, we take the expectation over the sum of squares and make
use of the fact that the samples xi are uncorrelated. This gives us:

E

[

N
∑

i=1

(xi − µ̂x)
2

]

= E







N
∑

i=1



xi −
1

N

N
∑

j=1

xj





2





(D.9)

= E





N
∑

i=1

x2
i −

1

N

(

N
∑

i=1

xi

)2


 (D.10)

= (N − 1)σ2
x (D.11)

From which we can conclude that the estimater is indeed unbiased and converges to
true variance σ2

x.
Furthermore, it is interesting to investigate the uncertainty associated with the

estimate. To find this out we look at the sum of squared differences used in the
estimator. This sum of N squared differences can be equivalently be written as a
sum of N −1 squares of a transformed random variable with zero mean and the same
variance. To see this, we start with the expression:

N
∑

i=1

(xi − µ̂x)
2 =

N
∑

i=1

x2
i −

1

N

(

N
∑

i=1

xi

)2

(D.12)

= xT

(

IN − 1

N

)

x (D.13)

This expression contains the N − 1 rank matrix IN − 1
N

which can be decomposed
using eigenvector decomposition into:

IN − 1

N
= V

[

IN−1 0
0 0

]

VT = ṼṼ
T

(D.14)

The N − 1 rank matrix contains N − 1 unit eigenvalues and one zero eigenvalue.
An N × (N − 1) submatrix Ṽ can be constructed from the matrix containing the



199

eigenvectors V by removing the column corresponding to the zero eigenvalue. If
we apply the transformation y = Ṽx we obtain the transformed random vector y
containing N − 1 uncorrelated random variables with zero mean and variance σ2

x.
The sum of N squared differences can thus be written as a sum of N − 1 squares:

N
∑

i=1

(xi − µ̂x)
2 = yTy =

N−1
∑

i=1

y2i (D.15)

If the random variables xi are Gaussian distributed, then the sum of squared differ-
ences would be σ2

xχ
2
N−1-distributed. On the other hand, for a large number of samples,

even in the case of non Gaussian distributed xi, the sum of squared differences would
be approximately Gaussian distributed as N

(

(N − 1)σ2
x, 2(N − 1)σ4

x

)

. Using these
results in the expression of the estimator we find the following distributions of the
sample variance estimator:

σ̂2
x ∼ σ2

x

N − 1
χ2
N−1 if xi is Gaussian distributed (D.16)

σ̂2
x ∼ N

(

σ2
x,

2

N − 1
σ4
x

)

for large N (D.17)

so that for both cases, the variance of the sample variance estimator is given by:

Var
[

σ̂2
x

]

=
2

N − 1
σ4
x (D.18)

From this we can also obtain an estimate of the variance of the sample standard
deviation estimator. We do this by linearizing the relation between standard deviation
and variance, σ =

√
σ2 around the true value of the variance, σ2

x, resulting in a

multiplication of the original variance by

(

1

2
√

σ2
x

)2

. The expression for the variance

of the sample standard deviation estimator is then given by:

Var [σ̂x] ≈
(

1

2σx

)2

Var
[

σ̂2
x

]

=
1

2(N − 1)
σ2
x (D.19)
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E
Integral transforms

E.1 Radon transform

The Radon transform is a projection over lines of an input image f(x, y) to a projec-
tion image (or sinogram) g(r, ϕ) and is defined as:

g(r, ϕ) = R
{

f(x, y)
}

=

∞
∫

−∞

∞
∫

−∞

f(x, y)δ(x cosϕ+ y sinϕ− r)dxdy (E.1)

The transposed Radon transform is a backprojection of the sinogram g(r, ϕ) back to
the image domain:

fbp(x, y) = RT
{

g(r, ϕ)
}

=

2π
∫

0

∞
∫

−∞

g(r, ϕ)δ(x cosϕ+ y sinϕ− r)drdϕ (E.2)

Applying the forward/backward transform to an impulsive source, i.e., f(x, y) =
δ(x)δ(y), gives us the point spread function of backprojection:

fδ(x, y) = RTR
{

δ(x)δ(y)
}

=

2π
∫

0

δ
(

x cosϕ+ y sinϕ
)

dϕ =
2

√

x2 + y2
(E.3)
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E.2 Fourier transform

The Fourier Transform of a one dimensional signal f(t) is defined as:

F (ω) = F
{

f(t)
}

=

∫ ∞

−∞
f(t)e−jωtdt (E.4)

and the inverse Fourier transform as:

f(t) = F−1
{

F (ω)
}

=
1

2π

∫ ∞

−∞
F (ω)ejωtdω (E.5)

E.3 Zeroth-order Hankel transform

The zeroth-order Hankel Transform of a one dimensional signal f(t) is defined as:

F (k) = H0

{

f(t)
}

=

∫ ∞

0

f(t)tJ0(kt)dt (E.6)

and the inverse zeroth-order Hankel transform as:

f(t) = H−1
0

{

F (k)
}

=

∫ ∞

0

F (k)kJ0(kt)dk (E.7)

where J0(t) is the zeroth-order Bessel function of the first kind:

J0(t) =
1

2π

π
∫

−π

ejt sin(ϕ)dϕ (E.8)

E.4 Abel transform

The Abel transform can be interpreted as the projection of a 2D radial symmetric
function h(r) onto a line. A 2D radially symmetric function is fully described by its
radial profile according to hr(r) = h(‖r‖). The projection of the radial symmetric
function onto a line is then given by:

ht(t) =

∞
∫

−∞

hr(
√

t2 + y2)dy (E.9)

where t parametrizes the position along the line onto which the projection is per-
formed. Due to symmetry we can write:

ht(t) = 2

∞
∫

0

hr(
√

t2 + y2)dy (E.10)



E.4. Abel transform 203

The resulting projection ht(t) is even, i.e. h(−t) = h(t). If we apply a coordinate

transformation of r =
√

t2 + y2, then for t > 0 we obtain the Abel Transform:

ht(t) = A
{

hr(r)
}

= 2

∞
∫

t

hr(r)r√
r2 − t2

dr (E.11)

The Abel transform, the Zeroth-order Hankel transform and the Fourier transform
are related to each other through the following relationship:

FA = 2πH0 (E.12)

To see why this is true, we rewrite expression (E.9) for the zeroth-order Hankel Trans-
form in polar coordinates:

ht(t) =

∞
∫

−∞

hr(
√

t2 + y2)dy =

∞
∫

−∞

∞
∫

−∞

hr(
√

x2 + y2)δ(x− t)dxdy (E.13)

=

∞
∫

0

2π
∫

0

hr(r)rδ(r cos(ϕ)− t)dϕdr (E.14)

Applying the Fourier transform and substituting the expression of the Abel Transform
(E.14) then gives:

Hω(ω) =

∞
∫

−∞

ht(t)e
−jωtdt (E.15)

=

∞
∫

−∞

∞
∫

0

2π
∫

0

hr(r)rδ(r cos(ϕ)− t)dϕdre−jωtdt (E.16)

=

∞
∫

0

hr(r)r

2π
∫

0

e−jωr cos(ϕ)dϕdr (E.17)

= 2π

∞
∫

0

hr(r)rJ0(ωr)dr (E.18)

which equals 2π times the zeroth-order Hankel Transform. The relationship can also
be written as:

A = 2πF−1H0 = FH0 (E.19)
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E.5 Fourier slice theorem

G(ω, ϕ) =

∞
∫

−∞

g(r, ϕ)e−jωrdr (E.20)

=

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

f(x, y)δ(x cosϕ+ y sinϕ− r)e−jωrdxdydr (E.21)

=

∞
∫

−∞

∞
∫

−∞

f(x, y)e−jω(x cosϕ+y sinϕ)dxdy (E.22)

= F (ω cosϕ, ω sinϕ) (E.23)
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[71] R. C. González and R. E. Woods, Digital Image Processing. Prentice Hall, 2008.

[72] L. C. Andrews and B. K. Shivamoggi, Integral Transforms for Engineers. SPIE,
1999.

[73] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical As-
pects of Linear Inversion. SIAM, 1998.

[74] A. C. Bovik, Handbook of image and video processing. Elsevier, 2005.

[75] M. A. Anastasio, J. Zhang, and X. Pan, “Image reconstruction in thermoacoustic
tomography with compensation for acoustic heterogeneities,” in SPIE Medical
Imaging 2005, vol. 5750, pp. 298–304, 2005.

[76] X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic
speed variations,” Phys. Med. Biol., vol. 51, no. 9, pp. 6437–6448, 2006.

[77] Y. Xu and L. V. Wang, “Effects of acoustic heterogeneity in breast thermoa-
coustic tomography,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
quency Control, vol. 50, pp. 1134–1146, 2003.

[78] H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property
reconstruction using finite-element-based photoacoustic tomography,” J. Opt.
Soc. Am. A, vol. 23, pp. 878–888, April 2006.

[79] J. Zhang, K. Wang, Y. Yang, and M. A. Anastasio, “Simultaneous reconstruction
of speed-of-sound and optical absorption properties in photoacoustic tomography
via a time-domain iterative algorithm,” in SPIE Photons Plus Ultrasound: Imag-
ing and Sensing 2008, vol. 6856, pp. 68561F–1–68561F–8, 2008.

[80] C. Zhang and Y. Wang, “A reconstruction algorithm for thermoacoustic tomog-
raphy with compensation for acoustic speed heterogeneity,” Phyisics in Medicine
and Biology, vol. 53, pp. 4971–4982, 2008.



BIBLIOGRAPHY 213

[81] S. Li, K. Mueller, M. Jackowski, D. P. Dione, and L. H. Staib, “Fast marching
method to correct for refraction in ultrasound computed tomography,” in 3rd
IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006,
pp. 896–899, 2006.

[82] S. Li, K. Mueller, M. Jackowski, D. P. Dione, and L. H. Staib, “Physical-space
refraction-corrected transmission ultrasound computed tomography made com-
putationally practical.,” in MICCAI (2) (D. N. Metaxas, L. Axel, G. Fichtinger,
and G. Szkely, eds.), vol. 5242 of Lecture Notes in Computer Science, pp. 280–
288, Springer, 2008.

[83] A. V. Oppenheim, Discrete-Time Signal Processing. Prentice-Hall, 1999.



214 BIBLIOGRAPHY



Nawoord

Eindelijk begin ik dan aan de laatste pagina van mijn proefschrift, het is er een die
niet meteen de hoogste prioriteit had, maar een die toch een keer geschreven moest
worden. Op deze laatste pagina zal ik proberen iedereen te bedanken die, direct of
indirect, heeft bijgedragen aan de vorming van dit proefschrift.

In eerste instantie bedank ik mijn promotor, Kees Slump. Zonder hem was dit alle-
maal niet gelukt, hij heeft er voor gezorgd dat ik aan deze promotie opdracht mocht
beginnen en heeft me veel vrijheid gegeven in de precieze invulling hiervan. Daarnaast
ben ik mijn assistent-promotor, Srirang Manohar, ook zeer dankbaar voor alles wat
hij voor me gedaan heeft. Zonder hem was ik nooit zover gekomen, hij heeft veel tijd
en moeite gestoken in de begeleiding en organisatie van het onderzoek, en hij wist
me altijd goed te motiveren. Verder wil ik ook alle mensen uit het NIMTIK project,
waaronder ik mijn opdracht heb uitgevoerd, bedanken. Het was altijd interessant om
tijdens de drie maandelijkse lunchmeeting te horen waar iedereen in het project nu
precies mee bezig was. Ook wil ik graag voor de goede samenwerking, vooral op het
experimentele werk, Jithin Jose, Steffen Resink en Thijs Maalderink van de Biomed-
ical Photonic Imaging groep bedanken. Zij hebben met veel succes de experimenten
uitgevoerd waarop ik mijn algorithmes en methodes heb kunnen loslaten, het was een
ideale samenwerking waarbij we veel aan elkaar hadden.

Binnen de vakgroep waar ik gewerkt heb, Signalen en Systemen, wil ik ook
iedereen bedanken voor de leuke tijd, de goede ondersteuning en de goede samen-
werking. Ondanks dat de verschillende onderzoeksgebieden en opdrachten binnen
onze groep aan de buitenkant en qua applicatiegebied niet altijd veel overlap ver-
toonden, waren de technieken die we gebruikten om onze problemen oplossen toch
weer erg aan elkaar verwant. Met name de medical imaging en biometrie subgroepen
waren onder water vrijwel hetzelfde, een oplossing kon altijd gevonden worden met
technieken uit de lineare algebra en parameterschatting. Veel heb ik ook gehad aan
mijn kamergenoten Joost Kaufman en Dirk-Jan Kroon. Joost wist altijd overal wel
wat vanaf, hij maakte zijn functie als kameroudste goed waar. Dirk-Jan was ook een
enorm nuttige kamergenoot die zich erg snel in problemen kon inleven en altijd in
Matlab binnen no time een oplossing in elkaar had gehacked. Daarnaast waren de
conferentie bezoeken naar de Verenigde Staten met Dirk-Jan, Gerbert en Almar van
het medical imaging team ook altijd een groot succes. Ook vond ik het leuk dat er
altijd weer een delegatie van de vakgroep mee ging op wintersport, een traditie die
ik nog wil blijven voortzetten. Verder wil ik de ondersteunende staf van de groep,
Anneke, Geert-Jan en Henny, ook bedanken voor hun hulp, ze stonden altijd voor je
klaar.
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Mijn familie wil ik ook bedanken voor hun ondersteuning. Ze waren altijd erg
nieuwsgierig naar wat ik nu precies aan het doen was, wat ik vervolgens erg moeilijk
vond om duidelijk aan ze uit te leggen. Ik hoop dat na het lezen van dit proefschrift
alles een stuk duidelijker is geworden, het staat hier uiteindelijk allemaal netjes op
papier. Verder wil ik mama bedanken voor het controleren van de Nederlandse samen-
vatting op spelling en grammatica fouten en Martin bedanken voor het ontwerpen van
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tijd gehad in huize Stinsburg, waar ik gewoond heb met Stijn en Steven. Het was er
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De leden van DAV Kronos, zowel de sprinters als de lappers als de trainers, wil ik
ook bedanken voor de altijd weer competatieve trainingen, de recreatieve wedstrijden
en alle andere mooie activiteiten. Ook bij DWV Hardboard heb ik een erg relaxte
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